УДК 546.811.57:546.86.22

Квазибинарный разрез Ag_2SnS_3 - Sb_2S_3

Ш. Г. Мамедов

Мамедов Шарафат Гаджиага, доктор PhD по химии, доцент, Институт катализа и неорганической химии имени академика М. Ф. Нагиева Национальной академии наук Азербайджана, Баку, azxim@mail.ru

Тиостаннаты и халькостаннаты серебра широко используются как перспективные функциональные материалы, обладающие полупроводниковыми, термоэлектрическими и фотоэлектрическими свойствами. Цель настоящего исследования - изучение фазовой диаграммы Ag₂SnS₃-Sb₂S₃ и определение границ твердых растворов на основе обоих компонентов. Сплавы исследовали методами физико-химического анализа. Построена диаграмма состояния системы Ag₂SnS₃-Sb₂S₃. Установлено, что система Ag₂SnS₃-Sb₂S₃ является квазибинарным сечением квазитройной системы Ag_2S - SnS_2 - Sb_2S_3 и относится к эвтектическому типу. Растворимость на основе Sb₂S₃ при комнатной температуре 10 мол.% $\mathrm{Ag}_2\mathrm{SnS}_3,$ а на основе тиостанната серебра Ag_2SnS_3 — 3 мол.% $\text{Sb}_2\text{S}_3.$ Твердые растворы на основе Sb_2S_3 кристаллизуются в ромбической сингонии, и с увеличением концентрации тиостанната серебра параметры кристаллической решетки увеличиваются.

Ключевые слова: Ag₂SnS₃-Sb₂S₃, фазовая диаграмма, система, эвтектика, твердый раствор, рентгенографический анализ.

DOI: https://doi.org/10.18500/1816-9775-2020-20-1-49-54

Введение

Исследование новых функциональных материалов является важнейшим фактором развития современной науки и техники. Тиостаннаты серебра относятся к числу таких материалов. Халькостаннаты серебра широко используются как перспективные функциональные материалы, обладающие полупроводниковыми, термоэлектрическими и фотоэлектрическими свойствами [1–8].

Полупроводники группы V_2VI_3 привлекают пристальное внимание исследователей своими уникальными свойствами и перспективой прикладного применения [9–14]. В частности, пленки Sb₂S₃ и Sb₂Se₃ вызывают интерес с точки зрения их применения в микроволновых, коммутационных и оптикоэлектронных устройствах. Показано, что Sb₂S₃ может быть перспективным при использовании в фотогальванических ячейках для видимой и ближней инфракрасной области спектра, так как имеет высокий коэффициент поглощения ($\alpha > 103$ см⁻¹) и оптимальную ширину запрещенной зоны 1.78–2.5 эВ. Эти материалы могут также найти применение в термоэлектрических устройствах охлаждения.

Соединение Sb_2S_3 плавится конгруэнтно при 820 К и кристаллизуется в ромбической сингонии

с параметрами элементарной ячейки: *a* = 11,20, *b* = 11,28, *c* = 3,83Å [15–20].

Боковые системы, составляющие квазитройную $Ag_2S-SnS_2-Sb_2S_3$, подробно изучены. Авторы [21–25] установили существование трех соединений серебра составов Ag_8SnS_6 , Ag_2SnS_3 и $Ag_2Sn_2S_5$.

Соединение Ag_2SnS_3 характеризуется конгруэнтным плавлением при 936 К и кристаллизуется в моноклинной сингонии: Пр.г, Pna2₁, a = 6.27 Å, b = 5.793 Å, c = 13.719 Å, $\beta = 93.27^{\circ}$ [21]. $Ag_2Sn_2S_5$ образуется по перитектической реакции при 955 К [21]. Авторы [25] тоже изучали данную систему. Они опредилили, что в системе образуются соединения составов $Ag_4Sn_3S_8$, Ag_8SnS_6 и Ag_2Sn_3 .

Одним из путей поиска и разработки методом направленного синтеза новых многокомпонентных фаз и материалов является изучение фазового равновесия. Цель настоящего исследования – изучение фазовой диаграммы Ag_2SnS_3 - Sb_2S_3 и определение границ твердых растворов на основе обоих компонентов. В данной работе представлены результаты исследования взаимодействия в системе Ag_2SnS_3 - Sb_2S_3 и построена *T-х* диаграмма состояния.

Экспериментальная часть

Сплавы для исследования системы Ag_2SnS_3 -Sb₂S₃ синтезировали из лигатур. Лигатуры Ag_2SnS_3 и Sb₂S₃ синтезированы из элементарных компонентов чистотой не менее 99,999% в откачанных кварцевых ампулах в однозонной печи при температуре 1000 и 825 К. Поликристаллические образцы сплавов системы Ag_2SnS_3 -Sb₂S₃ получали расплавлением исходных сульфидов в откачанных кварцевых ампулах при температуре 825–1000 К. После окончания синтеза образцы отжигали в течение 270 ч при температуре 500 К.

Исследование сплавов проводили методами дифференциально-термического (ДТА), рентгенофазового (РФА), микроструктурного (МСА) анализа, а также измерением микротвердости и определением плотности. РФА проводили на рентгеновском приборе модели Д2 PHASER с СиКα-излучением, Ni-фильтром, ДТА выполняли на низкочастотном термографе HTP-70 в температурном интервале 25–900° С. Скорость нагрева 10°/мин. Термопара хромель-алюмелевая, в качестве стандарта использовали оксид алюминия. МСА проводили на микроскопе МИМ-7, а микротвердость измеряли на микротвердомере ПМТ-3 при нагрузках, выбранных в результате измерения микротвердости каждой фазы. Плотность сплавов измерялась стандартным пикнометрическим методом. В качестве пикнометрической жидкости применялся толуол.

Результаты и их обсуждение

Для исследования системы $Ag_2SnS_3-Sb_2S_3$ синтезировали 12 сплавов. ДТА проводили на отожженных образцах сплавов системы $Ag_2SnS_3-Sb_2S_3$. Результаты термического анализа свидетельствуют о наличии остановок на кривых нагревания при 820–935 К. Термические эффекты на кривых нагревания эндотермические, обратимые (табл. 1).

Таблица 1 / Table 1

				- 2 0 20		
Состав, мол.% / Composition, mol.%		Термические эффекты, К / Thermal effects, К		Плотность, г/см ³ /	Фазовый состав /	
Ag ₂ SnS ₃	Sb ₂ S ₃	Солидус / Solidus	Ликвидус / Liquidus	Density, g/cm ²	r hase Composition	
100	0,0	_	935	4,580	$\tau (Ag_2SnS_3)$	
98	2,0	900	930	4,578	τ	
95	5,0	870	920	4,575	τ+ε	
90	10	750	885	4,570	τ+ε	
80	20	750	845	4,565	τ+ε	
70	30	750	800	4,560	τ+ε	
60	40	750	(евт)	4,554	τ+ε	
50	50	750	770	4,553	τ+ε	
40	60	750	785	4,552	τ+ε	
30	70	750	800	4,681	τ+ε	
20	80	750	810	4,670	τ+ε	
10	90	775	790	4,660	3	
5,0	95	790	800	4,650	3	
0,0	100	_	820	4,640	$\epsilon(Sb_2S_3)$	

Состав, результаты ДТА, плотности и микроструктура сплавов разреза Ag₂SnS₃-Sb₂S₃ Composition, DTA results, density and microstructure of alloys in the Ag₂SnS₃-Sb₂S₃ section

Результаты рентгенофазового анализа хорошо согласуются с данными микроструктурного анализа и подтверждают образование в системе $Ag_2SnS_3-Sb_2S_3$ области твердых растворов на основе исходных компонентов. Гомогенность твердых растворов определяли рентгеновским методом. Проведенные исследования показали, что на дифрактограммах твердых растворов на основе Ag_2SnS_3 присутствуют рефлексы, характерные для моноклинной структуры. В твердых растворах на основе Sb_2S_3 присутствуют рефлексы, характерные для ромбической структуры (рис. 1.)

Для определения границ твердых растворов были синтезированы сплавы 99, 98, 97, 96, 94, 92, 90, 89, 88 мол.% исходных компонентов. Эти сплавы отжигались в течение 300 ч при 600 и 450 К и затем закалялись. После тщательного изучения микроструктуры этих сплавов определялись границы растворимости.

Изучение микроструктуры показало, что сплавы, содержащие 0–10 и 97–100 мол.% Ag_2SnS_3 , однофазные, 10–97 мол.% Ag_2SnS_3 – двухфаз-

Рис. 1. Дифрактограмма сплавов системы Ag_2SnS_3 - Sb_2S_3 : $I - Sb_2S_3$; 2 - 10 мол.% Ag_2SnS_3 ; 3 - 11 мол.% Ag_2SnS_3 ; 4 - 96 мол.% Ag_2SnS_3 ; 5 - 97 мол.% Ag_2SnS_3 ; $6 - Ag_2SnS_3$ Fig. 1. Diffraction pattern of alloys of the Ag_2SnS_3 - Sb_2S_3 system: $I - Sb_2S_3$; 2 - 10 mol.% of Ag_2SnS_3 ; 3 - 11 mol.% of Ag_2SnS_3 ; 4 - 96 mol.% of Ag_2SnS_3 ; 5 - 97 mol.% of Ag_2SnS_3 ; $6 - Ag_2SnS_3$

Научный отдел

ные. С увеличением температуры образование твердых растворов на основе Sb_2S_3 достигает 12 мол.% Ag_2SnS_3 при эвтектической температуре. Установлено, что сплавы составов 0–10 мол и 97–100 мол.% Ag_2SnS_3 являются твердыми рас-

творами. Твердые растворы на основе сульфида сурьмы (Sb_2S_3) кристаллизуются в ромбической сингонии. С увеличением содержания Ag_2SnS_3 параметр ромбической решетки увеличивается для чистого Sb_2S_3 (табл. 2).

Таблица 2 / Table 2

Состав, мол.% Ag ₂ SnS ₃ /	Параметры ре	82		
Composition, mol.% Ag_2SnS_3	а	Ь	С	V, A ³
0,0	11,20	11,28	3,83	483,87
2,0	11,25	11,31	3,90	496,22
4,0	11,29	11,33	3,92	501,48
6,0	11,34	11,36	3,93	506,27
8,0	11,41	11,40	3,95	513,79
10	11,46	11,43	3,97	519,57

Іараметры кристаллической решетки твердых растворов (Sb ₂ S ₃) _{1-x} (Ag ₂ SnS ₃) _x
The crystal lattice parameters of solid solutions (Sb ₂ S ₃) _{1-x} (Ag ₂ SnS ₃) _x

На основании полученных результатов физико-химического анализа построена *T-х* диаграмма разреза Ag_2SnS_3 - Sb_2S_3 квазитройной системы Ag_2S - SnS_2 - Sb_2S_3 (рис. 2).

Рис. 2. *T-х* диаграмма системы $Ag_2SnS_3-Sb_2S_3$ Fig. 2. *T-х* diagram of the $Ag_2SnS_3-Sb_2S_3$ system

Как видно из рис. 2, система $Ag_2SnS_3-Sb_2S_3$ является квазибинарным сечением тройной системы $Ag_2S-SnS_2-Sb_2S_3$ и относится к эвтектическому типу. Координаты эвтектической точки: 60 мол.% Ag_2SnS_3 при 750 К. Состав эвтектической смеси определен построением треугольника Таммана.

Ликвидус системы состоит из двух ветвей первичной кристаллизации є и т. Ветви первичный кристаллизации є и т пересекаются в эвтектической точке. Монокристаллы твердых растворов $(Sb_2S_3)_{1-x}(Ag_2SnS_3)_x$ были получены методом Бриджмена – Стокбаргера (табл. 3).

Для выращивания монокристаллов $(Sb_2S_3)_{1-x}(Ag_2SnS_3)_x$ предварительно синтезировали поликристаллические сплавы 3–5 г, затем измельчали и переносили в ампулу. Скорость

перемещения фронта кристаллизации составила 3–5 мм/ч, в зоне кристаллизации градиент температуры 0,1–0,4 мм/ч. Таким образом, были получены однородные монокристаллические образцы длиной 20–30 мм и диаметром 15–20 мм $(Sb_2S_3)_{1-x}(Ag_2SnS_3)_x$, пригодные для дальнейших исследований.

Таблица 3 / Table 3

Оптимальный режим выращивания монокристаллов твердых растворов на основе Sb ₂ S ₃	
The optimal mode of growing single crystals of solid solutions based on Sb_2S_3	

Состав / Composition	<i>Т</i> ₁ - <i>Т</i> ₂ , К	Скорость перемещения в печи, мм/ч / Furnace transfer rate, mm / h	Размер монокристаллов, мм / Monocrystal size fishing, mm	Macca монокристал- лов, г / Single crystal mass fishing, g
$(Sb_2S_3)_{0,997} - (Ag_2SnS_3)_{0,003}$	700-800	3,0	7×16	6,2
$(Sb_2S_3)_{0,995}$ -($Ag_2SnS_3)_{0,005}$	700-800	3,0	7×16	6,4
$(Sb_2S_3)_{0,993}$ -(Ag ₂ SnS ₃) _{0,007}	700-800	3,0	7×18	6,5

Заключение

1.Методами физико-химического анализа (РФА, ДТА, МСА) впервые изучена и построена *T-х* фазовая диаграмма системы Ag_2SnS_3 -Sb₂S₃. Установлено, что система является квазибинарным сечением квазитройной системы Ag_2S -SnS₂-Sb₂S₃ и относится к эвтектическому типу.

 $2. B системе Ag_2SnS_3-Sb_2S_3 обнаружили образование твердых растворов на основе исходных компонентов. Растворимость на основе тиостанната серебра при комнатной температуре 3 мол.% <math display="inline">Sb_2S_3$, а на основе Sb_2S_3 10 мол.% Ag_2SnS_3 .

Список литературы

- Avellaneda D., Nair M. T., Nair P. K. Cu₂SnS³ and Cu₄SnS₄ thin films via chemical deposition for photovoltaic application // J. Thermochem. Soc. 2010. Vol. 158, № 6. P. 346–352.
- Fiechter S., Martinez M., Schmidt G., Henrion W., Tommet Y. Phase relations and optical properties of semiconducting ternary sulfides in the system Cu-Sn-S // J. Phys. Chem. Solids. 2003. Vol. 64. P. 1859–1862. DOI: https://doi.org/10.1016/S0022-3697(03)00172-0
- Gurieva G., Levchenko S., Schorr S., León M., Serna R., Nateprov A., Arushanovet E. Characterization of Cu₂SnSe₃ by spectroscopic ellip sometry // Thin Solid films. 2013. Vol. 535, № 2. P. 384–386. DOI: https://doi.org/10.1016/j.tsf.2012.11.104
- Kim K. M., Tampo H., Shibata H., Shigeru N. Growth and characterization of coevaporated Cu₂SnSe₃ thin films for photovoltaic applications // Thin Solid Films. 2013. Vol. 536, № 1. P. 111–114. DOI: 10.1016/j.tsf.2013.03.119
- Delgado G. E., Mora A. Y., Marcano G., Rincon C. Crystal structure refinement of the semiconducting compound Cu₂SnSe₃ from X-ray powder diffraction data // Mater. Res. Bull. 2003. Vol. 38. P. 1949–1955. DOI: https://doi. org/10.1016/j.materresbull.2003.09.017

- Parasyuk O. V., Gulay L. D., Piskach L. V., Kumanska Yu. O. The Ag₂Se-HgSe-SnSe₂ system and the crystal structure of the Ag₂HgSnSe₄// J. Alloys and Compounds. 2002. Vol. 339. P. 140–143. DOI: https://doi.org/10.1016/ S0925-8388(01)01985-5
- Parasyuk O. V., Chykhrij S. I., Bozhko V. V., Piskach L. V., Bogdanyuk M. S., Olekseyuk I. D., Bulatetska L. V., Pekhnyo V. I. Phase diagrammof the Ag₂S-HgS-SnS₂ system and single crystal prepartion, crystal structure and properties of Ag₂HgSnS₄ // J. Alloys and Compounds. 2005. Vol. 399. P. 32–37. DOI: https://doi.org/10.1016/j. jallcom.2005.03.008
- Parasyuk O. V., Fedorchuk A. O., Kogut Yu. M., Piskacha L. V., Olekseyuk I. D. The Ag₂S-HgS-GeS₂ system : Phase diagram, glass-formation region and crystal structure Ag₂ZnGeS₄// J. Alloys and Compounds. 2000. Vol. 500. P. 26–29. DOI: https://doi.org/10.1016/j.jallcom.2010.03.198
- Messina S., Nair M. T. S., Nair P. K. Solar cells with Sb₂S₃ absorber films. Thin Solid Films. 2009. Vol. 517. P. 2503–2507.
- Maghraoui-Meherzi H., Ben Nasr T., Kamoun N., Dachraoui M. Structural, morphology and optical properties of chemically deposited Sb₂S₃ thin films // Physica B. 2010. Vol. 405. P. 3101–3105. DOI: 10.1016/j.physb. 2010.04.020
- Maghraoui-Meherzi H., Ben Nasr T., Kamoun N., Dachraoui M. Physical properties of chemically deposited Sb₂S₃ thin films // Comptes Rendus Chimie. 2011. Vol. 14. P. 471–475. DOI: 10.1016/j.crci.2010.10.007
- Arun P., Vedeshwara A. G. Phase modification by instantaneous heat treatment of Sb2S3 films and their potential for photothermal optical recording // J. Appl. Phys. 1996. Vol. 79. P. 4029.
- Perales F., Agullo-Rueda F., Lamela J., Heras C. de las. Optical and structural properties of Sb₂S₃/MgF₂ multilayers for laser application s// J. Phys. D: Appl. Phys. 2008. Vol. 41. P. 045–403.

- Perales F., Lifante G., Agullo-Rueda F., Heras C. de las. Optical and structural properties in the amorphous to polycrystalline transition in Sb₂S₃ thin films // J. Phys. D: Appl. Phys. 2007. Vol. 40. P. 2440–2444.
- 15. Самсонов Г. В., Дроздова С. В. Сульфиды. М. : Металлургия, 1972. 304 с.
- Bayliss P., Nowaski W. Refinement of the structure of stibnite Sb₂S₃ // Z. Kristallogr. 1972. Vol. 135, № 2. P. 308–315.
- Popolitov V. I. Hydrothermal crystallization of Sb₂S₃ // Kristallografiya. 1968. Vol. 14, № 2. P. 545–548.
- Aliev O. M., Asadov M. M., Azhdarova D. S., Mamedov Sh. G., Ragimova V. M. Polythermal Section FeSb₂S₄-FeSm₂S₄ of the FeS-Sb₂S₃-Sm₂S₃ System // Russian Journal of Inorganic Chemistry. 2018. Vol. 63, iss. 6. P. 833–836.
- Aliyev O. M., Ajdarova D. S., Agayeva R. M., Maksudova T. F., Mamedov Sh. H. Phase Relations along the Cu₂S(Sb₂S₃, PbSb₂S₄, Pb₅Sb₄S₁₁)-PbCuSbS₃ Joins in the Pseudoternary System Cu₂S-PbS-Sb₂S₃ and

Physical Properties of $(Sb_2S_3)_{1-x}$ (PbCuSbS₃)_x Solid Solutions // Inorganic Materials. 2018. Vol. 54, iss. 12. P. 1199–1204.

- Bakhtiyarly I. B., Azhdarova D. S., Mamedov Sh. G. Pb–Sb–S ternary system // Russian Journal of Inorganic Chemistry. 2013. Vol. 58, iss. 6. P. 728–733.
- Кохан О. П. Взаємодія у системах Ag₂X−B^{IV}X₂ (B^{IV}− Si, Ge, Sn; X − S, Se) і властивості сполук : автореф. дис. ... канд. хім. наук. Ужгород, 1996. 21 с.
- Wang N., Fan A. K. An experimental study of the Ag₂S–SnS₂ pseudobinary join // Neues Jahrb. Mineral, Abh, 1989. Vol. 160. P. 33–36.
- 23. *Wang N*. New data for Ag₈SnS₆ (canfeildite) and Ag₈GeS₆ (argyrodite) // Neues Jahrb. Mineral. Monatsh. 1978. P. 269–272.
- Gorochov O. Les composés Ag₈MX₆ (M=Si, Ge, Sn et X=S, Se, Te) // Bull. Soc. Chim. Fr. 1968. № 6. P. 2263–2275.
- Kitazawa H., Kitakaze A., Sugaki A. Phase relation on the Ag–Sn–S system // Collected Abstract Mineral. Soc. Japan, 1985. Vol. 19.

Образец для цитирования:

Мамедов Ш. Г. Квазибинарный разрез Ag₂SnS₃-Sb₂S₃ // Изв. Сарат. ун-та. Нов. сер. Сер. Химия. Биология. Экология. 2020. Т. 20, вып. 1. С. 49–54. DOI: https://doi.org/10.18500/1816-9775-2020-20-1-49-54

Quasi-binary Section Ag₂SnS₃-Sb₂S₃

Sh. H. Mammadov

Sharafat H. Mammadov, https://orcid.org/0000-0002-1624-7345, Institute of Catalysis and Inorganic Chemistry named after academician M. F. Nagiyev of the National Academy of Sciences of Azerbaijan, 113 G. Javid Ave., Az1143 Baku, Republic of Azerbaijan, azxim@mail.ru

Silver thiostannates and chalcostannates are widely used as promising functional materials which have semiconductor, thermoelectric, and photoelectric properties. The goal of this research is to study the Ag_2SnS_3 - Sb_2S_3 phase diagram and determine the boundaries of solid solutions based on both components. Alloys were investigated using methods of physicochemical analysis. Based on the results of the study, a condition diagram of the Ag_2SnS_3 - Sb_2S_3 system was constructed. It was established that the Ag_2SnS_3 - Sb_2S_3 system is a quasibinary section of the Ag_2SnS_3 - Sb_2S_3 quasiternal system and is the one of the eutectic type. The solubility based on Sb_2S_3 at room temperature is 10 mol% Ag_2SnS_3 , and based on Sb_2S_3 crystalize in a rhombic system and, with an increase in silver thiostannate concentration, the lattice parameters increase.

Keywords: Ag_2SnS_3 - Sb_2S_3 , phase diagram, system, eutectic, solid solution, X-ray analysis.

References

 Avellaneda D., Nair M. T., Nair P. K. Cu₂SnS₃ and Cu₄SnS₄ thin films via chemical deposition for photovoltaic application. *J. Thermochem. Soc.*, 2010, vol. 158, no. 6, pp. 346–352.

- Fiechter S., Martinez M., Schmidt G., Henrion W., Tommet Y. Phase relations and optical properties of semiconducting ternary sulfides in the system Cu-Sn-S. *J. Phys. Chem. Solids*, 2003, vol. 64, pp. 1859–1862. DOI: 10.1016/S0022-3697(03)00172-0
- Gurieva G., Levchenko S., Schorr S., León M., Serna R., Nateprov A., Arushanovet E. Characterization of Cu₂SnSe₃ by spectroscopic ellip sometry. *Thin Solid films*, 2013, vol. 535, no. 2, pp. 384–386. DOI: 10.1016/j. tsf.2012.11.104
- Kim K. M., Tampo H., Shibata H., Shigeru N. Growth and characterization of coevaporated Cu₂SnSe₃ thin films for photovoltaic applications. *Thin Solid Films.*, 2013, vol. 536, no. 1, pp. 111–114. DOI: 10.1016/j.tsf.2013.03.119
- Delgado G. E., Mora A. Y., Marcano G., Rincon C. Crystal structure refinement of the semiconducting compound Cu₂SnSe₃ from X-ray powder diffraction data. *Mater. Res. Bull.*, 2003, vol. 38, pp. 1949–1955. DOI: https:// doi.org/10.1016/j.materresbull.2003.09.017
- Parasyuk O. V., Gulay L. D., Piskach L. V., Kumanska Yu. O. The Ag₂Se-HgSe-SnSe₂ system and the crystal structure of the Ag₂HgSnSe₄. J. Alloys and Compounds, 2002, vol. 339, pp. 140–143. DOI: https:// doi.org/10.1016/S0925-8388(01)01985-5
- Parasyuk O. V., Chykhrij S. I., Bozhko V. V., Piskach L. V., Bogdanyuk M. S., Olekseyuk I. D., Bulatetska L. V., Pekhnyo V. I. Phase diagrammof the Ag₂S-HgS-SnS₂ system and single crystal prepartion, crystal structure and properties of Ag₂HgSnS₄. *J. Alloys and Compounds*, 2005, vol. 399, pp. 32–37. DOI: https://doi.org/10.1016/j. jallcom.2005.03.008
- Parasyuk O. V., Fedorchuk A. O., Kogut Yu. M., Piskacha L. V., Olekseyuk I. D. The Ag₂S-HgS-GeS₂

system: Phase diagram, glass-formation region and crystal structure Ag₂ZnGeS₄. *J. Alloys and Compounds*, 2000, vol. 500, pp. 26–29. DOI: https://doi.org/10.1016/j. jallcom.2010.03.198

- Messina S., Nair M.T. S, Nair P. K. Solar cells with Sb₂S₃ absorber films. *Thin Solid Films*, 2009, vol. 517, pp. 2503–2507.
- Maghraoui-Meherzi H., Ben Nasr T., Kamoun N., Dachraoui M. Structural, morphology and optical properties of chemically deposited Sb₂S₃ thin films. *Physica B*, 2010, vol. 405, pp. 3101–3105. DOI: 10.1016/j. physb.2010.04.020
- Maghraoui-Meherzi H., Ben Nasr T., Kamoun N., Dachraoui M. Physical properties of chemically deposited Sb₂S₃ thin films. *Comptes Rendus Chimie*, 2011, vol. 14, pp. 471–475. DOI: 10.1016/j.crci.2010.10.007
- Arun P., Vedeshwara A. G. Phase modification by instantaneous heat treatment of Sb2S3 filmsand their potential for photothermal optical recording. *J. Appl. Phys.*, 1996, vol. 79, pp. 4029.
- Perales F., Agullo-Rueda F., Lamela J., Heras C. de las. Optical and structural properties of Sb₂S₃/MgF₂ multilayers for laser applications. *J. Phys. D: Appl. Phys.*, 2008, vol. 41, pp. 045–403.
- Perales F., Lifante G., Agullo-Rueda F., Heras C. de las. Optical and structural properties in the amorphous to polycrystalline transition in Sb₂S₃ thin films. *J. Phys. D: Appl. Phys.*, 2007, vol. 40, pp. 2440–2444.
- Samsonov G. V., Drozdova S. V. Sulfidy [Sulfides]. Moscow, Metallurgiya Publ., 1972. 304 p. (in Russian).
- Bayliss P., Nowaski W. Refinement of the structure of stibnite Sb₂S₃. Z. Kristallogr., 1972, vol. 135, no. 2, pp. 308–315.

- Popolitov V. I. Hydrothermal crystallization of Sb₂S₃. *Kristallografiya*, 1968, vol. 14, no. 2, pp. 545–548.
- Aliev O. M., Asadov M. M., Azhdarova D. S., Mamedov Sh. G., Ragimova V. M. Polythermal Section FeSb₂S₄-FeSm₂S₄ of the FeS-Sb₂S₃-Sm₂S₃ System. *Russian Journal of Inorganic Chemistry*, 2018, vol. 63, iss. 6. pp. 833–836 (in Russian).
- Aliyev O. M., Ajdarova D. S., Agayeva R. M., Maksudova T. F., Mamedov Sh. H. Phase Relations along the Cu₂S(Sb₂S₃, PbSb₂S₄, Pb₅Sb₄S₁₁)-PbCuSbS₃ Joins in the Pseudoternary System Cu₂S-PbS-Sb₂S₃ and Physical Properties of (Sb₂S₃)_{1-x}(PbCuSbS₃)_x Solid Solutions. *Inorganic Materials*, 2018, vol. 54, iss. 12, pp. 1199–1204.
- Bakhtiyarly I. B., Azhdarova D. S., Mamedov Sh. G. Pb–Sb–S ternary system. *Russian Journal of Inorganic Chemistry*, 2013, vol. 58, iss. 6, pp. 728–733 (in Russian).
- Kokhan O. P. *The Interactions in* Ag₂X–B^{IV}X₂ (B^{IV} Si, Ge, Sn; X S, Se) *Systems and the Properties of Compounds*. Tesis Diss. Dr. Sci. (Chem.). Uzhgorod, 1996. 21 p. (in Ukrainian).
- Wang N., Fan A. K. An experimental study of the Ag₂S–SnS₂ pseudobinary join. *Neues Jahrb. Mineral. Abh.*, 1989, vol. 160, pp. 33–36.
- Wang N. New data for Ag₈SnS₆ (canfeildite) and Ag₈GeS₆ (argyrodite). *Neues Jahrb. Mineral. Monatsh.*, 1978, pp. 269–272.
- Gorochov O. Les composés Ag₈MX₆ (M=Si, Ge, Sn et X=S, Se, Te). *Bull. Soc. Chim. Fr.*, 1968, no. 6, pp. 2263–2275.
- Kitazawa H., Kitakaze A., Sugaki A. Phase relation on the Ag–Sn–S system. *Collected Abstract Mineral. Soc. Japan*, 1985, vol. 19.

Cite this article as:

Mammadov Sh. H. Quasi-binary Section Ag₂SnS₃-Sb₂S₃. *Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology*, 2020, vol. 20, iss. 1, pp. 49–54 (in Russian). DOI: https://doi.org/10.18500/1816-9775-2020-20-1-49-54