Из рисунка видно, что данная двойная система имеет большую область расслоения. Одним из перспективных способов увеличения растворимости двух жидких фаз является введение солейвсаливателей. Такие соли в своем составе имеют ионы больших размеров. Полагают [7, 8], что они разрыхляют структуру воды и облегчают внедрение в нее малополярных молекул органического растворителя. Поэтому следующим этапом работы будет изучение влияния солей-всаливателей на взаимную растворимость компонентов, состав и температуру критического раствора двойной системы вода—н-бутиловый спирт.

Список литературы

- Химическая энциклопедия / гл. ред. И. Л. Кнунянц : в 5 т. М. : Сов. энцикл., 1988–1998. Т. 1–5.
- 2. De Santis R., Marrelli L., Muscetta P.N. Influence of temperature on the liquid–liquid equilibrium of the

water–*n*-butyl alcohol–sodium chloride system // J. Chem. Eng. Data. 1976. Vol. 21, № 3. P. 324–327.

- 3. *Hill A. E., Malisoff W. M.* The mutual solubility of liquids. III. The mutual solubility of phenol and water. IV. The mutual solubility of normal butyl alcohol and water // J. Amer. Chem. Soc. 1926. Vol. 48, № 4. P. 918–927.
- Reber L. A., McNabb W. M., Lucasse W. W. The effect of salts on the mutual miscibility of normal butyl alcohol and water // J. Phys. Chem. 1942. Vol. 46, № 4. P. 500–515.
- Аносов В. Я., Озерова М. И., Фиалков Ю. Я. Основы физико-химического анализа. М. : Наука, 1976. 504 с.
- 6. *Трейбал Р.* Жидкостная экстракция / пер. с англ.; под ред. С. З. Кагана. М. : Химия, 1966. 724 с.
- Самойлов О. Я. Структура водных растворов электролитов и гидратация ионов. М. : Изд-во АН СССР, 1957. 182 с.
- 8. *Крестов Г. А.* Термодинамика ионных процессов в растворах. Л. : Химия, 1984. 272 с.

УДК 539.193/.194;535/33.34

СТРУКТУРНО-ДИНАМИЧЕСКИЕ МОДЕЛИ И СПЕКТРОСКОПИЧЕСКАЯ ИДЕНТИФИКАЦИЯ ДИМЕРОВ УРАЦИЛА И АЗАУРАЦИЛОВ

М. Д. Элькин¹, А. Н. Панкратов¹, Е. А. Джалмухамбетова², О. М. Алыкова²

¹Саратовский государственный университет E-mail: elkinmd@mail.ru; E-mail: PankratovAN@info.sgu.ru ²Астраханский государственный университет E-mail: alenna@list.ru; E-mail: olga-alykova@mail.ru

В рамках метода теории функционала плотности на основании модельных квантовохимических расчетов параметров адиабатического потенциала димеров урацила, 5- и 6-азаурацилов предложена интерпретация колебательных состояний соединений. Выявлены признаки спектроскопической идентификации веществ.

Ключевые слова: адиабатический потенциал, колебательные спектры, димеры урацила и азаурацилов.

Structural Dynamic Models and Spectroscopic Identification of the Dimers of Uracil and Azauracils

M. D. Elkin, A. N. Pankratov, E. A. Dzhalmukhambetova, O. M. Alykova

On the base of model DFT quantum chemical computations of adiabatic potential parameters for uracil, as well as for 5- and 6-azauracils

dimers, the interpretation of the above compounds vibrational states has been proposed. The indications of the substances' spectroscopic identification have been revealed.

Key words: adiabatic potential, vibrational spectra, dimers of uracil and azauracils.

Урацил и азаурацилы относят к биомолекулам с широким спектром фармакологического, в первую очередь, антиканцерогенного действия. С этим связан интерес к исследованию структуры и спектров указанных соединений. Сошлемся для примера на публикации [1–4]. Предлагаемая в периодической литературе интерпретация колебательных спектров урацила, 5- и 6- азаурацилов (рисунок) касалась, как правило, свободных молекул, хотя в реальных условиях соединения находятся в конденсированном состоянии.

Нумерация атомов в молекулах урацила и азаурацилов

В работе [4] была предпринята попытка учета межмолекулярного взаимодействия для твердой фазы урацила. Предполагалось, что в конденсированном состоянии имеет место димеризация соединений с образованием водородносвязанных ассоциатов. Выводы о доминирующих димерах (возможно наличие семи димеров для урацила и 6-азаурацила, шесть димеров для 5-азаурацила) были сделаны на основании анализа интенсивностей полос. Однако теоретической основой указанных исследований являлась классическая теория молекулярных колебаний [5], известными недостатками которой является зависимость результатов модельных расчетов от исходного приближения в выборе силового поля, ограниченность гармоническим приближением в оценке колебательных состояний исследуемых молекулярных объектов. Оценка электрооптических параметров осуществлялась в рамках валентно-оптической схемы, применение которой к циклическим соединениям ставилось под вопрос авторами подхода.

Применение квантовохимических методов для построения структурно-динамических моделей циклических соединений – реальный выход из ситуации. Для ряда соединений урацилового ряда такие исследования представлены, к примеру, в публикациях [6–8]. Полученные результаты являются предварительными, а само исследование нуждается в продолжении.

Математическая модель колебательных состояний молекулярных систем

Для оценки положения полос в колебательных спектрах соединений использовалось известное соотношение теории молекулярных колебаний [9]:

$$E^{n} = v_{s}(n_{s} + 1/2) + \chi_{sr}(n_{s} + 1/2)(n_{r} + 1/2) \quad (1)$$

Значения ангармонических констант χ_{sr} оценивались по соотношениям из публикации [10]:

$$\chi_{ss} = (1/16)F_{ssss} - (5/48)(F_{sss})^2 / v_s + (1/32)(F_{ssr})^2 (\Omega(s;s;-r) - \Omega(s;s;r) - 12\Omega(r;r;r))(1 - \delta_{sr}), \tag{2}$$

$$\chi_{sr} = (1/16)F_{ssrr} - (1/8)(F_{ssr})^2 (\Omega(s;s;-r) + \Omega(s;s;r)(1-\delta_{sr}) + (3/8)(F_{srt})^2 (\Omega(s;r;t) - \Omega(s;r;-t) + \Omega(s;-r;t) - \Omega(s;-r;-t))(1-\delta_{sr})(1-\delta_{sr})(1-\delta_{rt}) + L(a;s;r)^2 / (\Omega(s;r;0) + \Omega(s;-r;0))/2.$$
(3)

В соотношениях (1)–(3) v_s – частоты гармонических колебаний (в см⁻¹), $L(\alpha, sr)$ – постоянные Кориолиса; F_{srt} и F_{srtu} – кубические и квартичные силовые постоянные (параметры адиабатического потенциала молекулы); n_s – квантовые числа рассматриваемого колебательного состояния; $\Omega(s;\pm r;\pm t) = (v_s \pm v_r \pm v_t)^{-1}$ – резонансные функции.

Оценка геометрии и параметров адиабатического потенциала мономеров и димеров урацила, 5- и 6-азаурацилов осуществлялась с помощью пакета Gaussian 03W [11] для трех атомных базисов 6-311G(d), 6-311G(d,p) и 6-311+G(d,p).

Результаты и их обсуждение

Как известно, для урацила и его производных характерна амид-имидольная (конкретнее – лактам-лактимная) таутомерия [12]. В настоящей работе нами рассмотрена преобладающая обычно в кристалле и растворах [12] амидная (лактамная) форма. Замена атома углерода шестичленного цикла урацила атомом азота приводит к заметному уменьшению значений длин валентных связей $R_{4,5}$ и $R_{5,6}$ (~0.06 Å). На величину ~4–8° изменяются расчетные значения валентных углов $A_{2,1,6}$, $A_{4,5,6}$, $A_{1,6,5}$. Расчетные значения длин валентных связей, участвующих в образовании димеров, попадают в диапазоны: $R_{CH} = 1.08-1.09$. $R_{NH} = 1.01$, $R_{C=O} = 1.20-1.21$ Å. Выбор базиса сказывается на третьем знаке мантиссы для длин связей и на втором знаке мантиссы для валентных углов.

Образование димеров не приводит к существенному изменению геометрических параметров шестичленных циклов по сравнению с мономерами. Для длин валентных связей оно не выходит за пределы 0.01 Å, для валентных углов 0.8°. Для связей R_{N-H} и R_{C=O}, участвующих в межмолекулярном взаимодействии, длина увеличивается на величину ~0.02 Å. Длина водородной связи О…Н между мономерами попадает в интервал 1.85-1.88 Å для димеров 6-азаурацила, для 5-азаурацилов имеет место несколько более существенный разброс 1.78-1.91 Å. Нижняя граница соответствует димерам, в образовании которых участвует валентная связь R_{1.7}. Выбор базиса квантовохимического расчета принципиального значения не имеет.

Интерпретация колебаний мономеров и димеров урацила, 5- и 6-азаурацилов представлена в табл. 1–4. Данные приведены для базисного набора 6-311G(d,p). Отметим, что для димеров симметрии C_{2h} (димеры 7-8'; 8-7', 9-8'; 8-9', 10-9'; 9-10') имеет место правило альтернативного запрета для интенсивностей полос в ИК и КР колебательных спектрах [6].

Весь набор колебаний исследуемых димеров разделен на две группы. Первая группа интерпретирована как колебания молекулярных фрагментов, участвующих в образовании димера (валентные (q) колебания связей N-H, C-H, C=O; плоские (β) и неплоские (ρ) деформационные колебания этих связей). Вторая группа колебаний интерпретирована как фундаментальные колебания урацилового остова. Отметим, что такое деление носит условный характер для плоских деформационных колебаний в диапазоне 600–400 см⁻¹. В этом случае имеет место перепутывание форм нормальных колебаний, интерпретированных как колебания углов N-C=O, C-C=O ($\beta_{C=O}$), и колебаний валентных углов шестичленного цикла (γ).

Использование ангармонического приближения позволяет получить хорошее согласие опытных и вычисленных значений частот фундаментальных колебаний в высокочастотном диапазоне колебательного спектра. Интерес представляют валентные колебания связей N-H.

Из модельных квантовых расчетов для мономеров соединений получены следующие значения кубических и квартичных силовых постоянных связи N-H: $F_{qqq} \sim 2310 \text{ см}^{-1}$, $F_{qqqq} \sim 1360 \text{ см}^{-1}$. Ангармоническое смещение полос в длинноволновый диапазон спектра определяют первые два слагаемых выражения (2). Это величина ~170 см⁻¹.

Оценка кубических и квартичных силовых постоянных для валентных колебаний связей N-H, участвующих в образовании димеров, приводит к величинам: $F_{QQQ},\,F_{QQq}\sim 1780\,\,{\rm cm^{-1}},$ $F_{QQQQ}, F_{QQqq}, F_{qqqq} \sim 750$ см⁻¹ (символ Q относится к колебаниям типа симметрии A_g, символ $q - \kappa$ антисимметричным колебаниям типа B_{μ}). Отметим, что для невзаимодействующих связей N-Н указанные силовые постоянные оцениваются соответственно величинами ~1620 и ~690 см⁻¹. Согласно формулам (2) и (3), величина ангармонического смещения в длинноволновый диапазон спектра укладывается в интервал ~200–150 см⁻¹. К таким же результатам приводит и процедура масштабирования с параметрами, используемыми в работах [7-9]. Этот факт дает основание применять указанную процедуру для предварительной оценки ангармонического смещения полос в колебательных спектрах мономеров и димеров исследуемого класса соединений.

Образование димеров приводит к появлению дублетов, энергетическая щель между которыми может достигать величины ~100 см⁻¹ для валентных колебаний связей N-H ($q_{\rm NH}$). Для неплоских деформационных колебаний этой связи ($\rho_{\rm NH}$) такая щель не превышает величины ~40 см⁻¹. Соответствующая полоса для димеров симметрии C_{2h} имеет заметную интенсивность в ИК спектре (тип симметрии B_u). В спектрах КР интенсивность соответствующих полос мала и непригодна для решения задачи спектроскопической идентификации различных димеров урацила и азаурацилов. По этой причине в таблицах они не приводятся.

M	C
ИНТЕНПИЕТАНИЕ СОЛЕНАЦИИ В ЛИМЕНАУ УНАНИЛА И АЗАУНАНИЛОВ СИММ	етпии с
ппсрпрстация колстании в димерах урацила и азаурацилов сими	$c_1 p_{nn} c_{2k}$

Таблица 1

					- ••						- 20			
Форма	V _{aken}	M	ономер		7-8';8-7' 9-8';8-9'				9-10';10-9'					
колеб.	[1,3]	Vaur	ИК	КР	Vaur	ИК	КР	Vaur	ИК	КР	vaur	ИК	КР	
		ani			апі		Урацил	ані			ані		·	
<i>q</i> _{NII}	3484	3463	99	95	3424	118	149	3462	194	170	3463	200	248	
$q_{\rm NH}$	3435	3424	60	77	3107	3142	827	3176	1737	533	3114	2243	609	
$Q_{C=0}$	1764	1765	599	11	1735	511	103	1732	780	69	1769	1119	22	
$Q_{C=0}$	1741	1729	625	37	1707	2817	20	1719	1980	40	1686	1764	129	
$\beta_{\rm NH}, Q$	1472	1455	86	10	1511	90	90	1453	163	22	1467	155	29	
β _{NH} ,β	1399	1377	5.4	0.5	1398	251	5.2	1426	12	31	1431	38	47	
β _{NH} ,β	1389	1363	84	2.2	1374	38	10	1379	358	0.5	1374	113	4.9	
$\beta_{C=O}$	559	548	3.8	2.6	560	9.6	7.7	553	39	3.0	553	3.7	5.3	
$\beta_{C=O}$	391	380	20	1.9	391	60	3.7	390	82	3.0	393	97	3.0	
$\rho_{C=O}$	804	800	71	0.8	805	134	0.9	798	63	2.2	793	62	2.2	
$\rho_{C=O}$	722	754	40	0.0	757	33	0.4	746	20	0.5	748	30	0.4	
$\rho_{\rm NH}$	662	672	72	2.3	672	88	4.6	884	198	-	911	182	0.2	
$\rho_{\rm NH}$	551	555	44	1.0	861	188	_	565	121	1.7	570	118	1.7	
						5-A	Азаураці	ил						
$q_{ m NH}$	3464	3447	94	101	3424	125	166	3446	187	188	3445	184	257	
$q_{ m NH}$	3437	3426	61	86	3090	2874	719	3189	1587	472	3118	2152	551	
$Q_{\rm C=0}$	1796	1785	438	15	1770	613	83	1766	459	58	1790	962	26	
$Q_{\rm C=0}$	1780	1763	721	21	1724	2440	22	1736	2160	24	1709	1725	77	
$\beta_{\rm NH}$	1454	1438	119	5.9	1498	232	61	1437	198	19	1452	152	33	
$\beta,\beta_{\rm NH}$	1393	1375	19	4.0	1375	252	16	1420	29	27	1429	142	15	
$\beta,\beta_{\rm NH}$	1375	1357	6.9	9.8	1356	35	18	1369	41	13	1370	78	22	
$\beta_{C=O}$	587	588	0.7	4.5	594	0.6	19	593	7.1	8.8	592	28	6.2	
$\beta_{C=O}$	402	391	17	2.2	404	52	4.5	401	65	3.6	402	85	3.9	
ρ _{C=O}	786	781	41	0.6	783	129	0.0	780	26	1.5	783	25	1.0	
$\rho_{C=O}$	757	752	28	0.3	750	0.0	0.8	749	15	0.8	750	27	0.8	
$\rho_{\rm NH}$	662	676	94	2.0	676	99	0.0	874	193	0.1	904	176	0.2	
$\rho_{\rm NH}$	587	592	44	1.1	861	169	0.0	600	152	1.3	611	135	1.4	
	2456	2455	100	100	2412	6-A	Азаураці	ил		1 70	2452	200	265	
$q_{\rm NH}$	3476	3455	100	102	3412	136	154	3452	223	179 510	3452	209	265	
$q_{\rm NH}$	3423	3413	64 522	80	3210	2466	1/6	3158	1880	518	3153	2014	352	
$Q_{C=0}$	1/83	1//3	523	12	1/43	321	166	1724	451	103	1///	983	26	
$\mathcal{Q}_{C=0}$	1/6/	1/38	20	31	1/23	2925	140	1/04	2349	45	1693	1441	91	
β _{NH}	1431	1422	30	12	1480	123	148	1424	35	4/	1442	31	43	
P _{NH}	1400	13/9	42	5.0	1381	165	22	1412	270	18	140/	48	49	
<i>Q</i> ,p _{NH}	550	134/	98 12	3.4	1330	80 56	32 0 1	551	3/8	6.2	13/1	223	4.8	
β,PC=0	385	376	23	1.7	385	64	3.7	386	95	23	387	104	3.0	
P _{C=0}	750	752	20	0.4	754	115	0.4	778	68	2.3	745	7.0	1.0	
PC=0	730	733	21	0.4	730	0.2	1.7	720	11	0.2	733	1.9	0.2	
PC=0	668	684	126	1.2	676	104	1.2	863	222		907	176	0.0	
PNH	576	605	42	1.2	851	205	0.0	600	193	0.1	627	189	13	
I PNH	210	1 000	1 14	1 1 1	1 001		0.0	0000	1 10	U.1	021	1 107		

Примечание. В табл. 1–4 частоты приведены в см⁻¹. В графах «ИК» и «КР» табл. 1 и 2, а в некоторых случаях (поскольку у 5-азаурацила нет димера типа 10-11';9-10') также табл. 3 и 4, представлены интенсивности полос ИК спектров в км/ моль, интенсивности линий спектров КР в Å⁴/а.е.м.

Таблица 2

Интерпретация	колебаний в	лимерах	уранила и	азаурацилов	симметрии С	
	nour ounin D		J Parquina in	usu, puginioz	emine prin e	S

	8-7'.9-8'			10-7'.9-8'			1	0_0'.0_8'		10-11'.9-10'			
Форма			LCD			140	10-7,7-0			10	100		
колео.	ν _{aнг}	ИК	КР	v _{анг}	ИК	КР	v_{ahr}	ИК	КР	v _{анг}	ИК	KP	
		1				Урацил							
$q_{\rm NH}$	3448	97	90	3442	164	196	3641	197	208	3462	204	248	
$q_{\rm NH}$	3148	2396	680	3115	2583	111	3159	1999	574	3422	62	67	
$Q_{C=O}$	1737	890	86	1753	856	57	1750	787	49	1766	1237	21	
$Q_{C=O}$	1715	2104	30	1697	2242	84	1706	2024	85	1697	1636	135	
$\beta_{\rm NH}$	1489	130	52	1491	140	68	1461	159	26	1461	155	28	
$\beta_{\rm NH}$	1415	138	22	1418	145	26	1431	31	39	1435	26	14	
$\beta,\beta_{\rm NH}$	1376	230	3.9	1362	46	20	1375	222	2.8	1377	145	5.8	
β _{C=O}	560	44	4.0	559	7.3	5.2	555	30	3.9	552	7.6	8.1	
β _{C=O}	396	71	3.3	398	77	2.3	397	90	3.0	391	65	4.1	
$\rho_{\rm NH}$	890	145	0.1	894	164	0.1	901	182	0.1	882	121	0.1	
$\rho_{\rm NH}$	818	31	0.8	839	28	0.8	872	6.8	0.1	-	_	_	
$\rho_{C=O}$	801	121	1.5	797	97	1.9	795	66	2.2	792	30	1.3	
$\rho_{C=O}$	752	26	0.5	752	34	0.4	747	25	0.4	752	62	0.3	
$\rho_{\rm NH}$	669	42	2.3	669	43	2.4	_	_	_	674	72	2.0	
$\rho_{\rm NH}$	557	63	0.9	581	59	9.8	565	121	1.8	568	108	1.7	
5-Азаурацил													
$q_{\rm NH}$	3446	125	179	3434	161	212	3447	187	224	-	_	-	
$q_{\rm NH}$	3208	1858	596	3120	2555	633	3177	1814	503	-	-	-	
$Q_{C=0}$	1771	648	67	1778	819	53	1778	695	42	_	_	_	
$Q_{C=0}$	1729	2153	25	1719	2024	49	1729	1965	51	_	_	_	
β _{NH}	1501	113	26	1493	171	36	_	_	_	_	_	_	
β _{NII}	1441	91	27	1446	153	21	1438	259	49	_	_	_	
β,β _{NII}	1377	159	24	1374	243	21	1365	322	27	_	_	_	
ßeig	592	3.4	13	596	22	12	594	18	7.3	_	_	_	
<u> </u>	407	56	4	410	66	4 1	408	70	3.7	_	_	_	
PC=0	885	170	0.1	887	163	0.1	888	182	0.0		_	_	
PNH	823	30	0.1	844	7.5	0.5	859	3.5	0.0				
PNH	781	00	1.2	784	76	0.0	781	27	1.3				
PC=0	750	61	0.7	750	16	0.9	750	27	0.8				
P _{C=0}	684	40	0.7	672	51	0.0	750	20	0.8	_		_	
P _{NH}	500	49	2.2	620	75	2.2	-	151	-	_	_	_	
ρ _{NH}	399	80	0.7	020	/3	0.7	002	131	1.3	_	_	_	
	2457	166	171	3422	0-A	азаураци 210	3456	207	224	3454	211	256	
q _{NH}	343/	2150	656	3432	2220	671	3146	1061	5/6	3434	1061	407	
$q_{\rm NH}$	1740	551	74	1760	675	50	1760	604	J40 16	1774	1001	2407	
$\mathcal{L}_{C=0}$	1/48	2120	24	1700	1062	59	1710	1956	40	1//0	1099	101	
$\mathcal{Q}_{C=0}$	1/24	2120	54	1/09	1902	02	1/12	1830	05	1/08	1380	20	
p _{NH}	14/8	01	00	1400	/5	95	1436	43	44	1430	43	30	
$p_{\rm NH}, Q$	1421	35	55	1409	113	26	1410	33	52	1406	21	20	
$\mathcal{Q}, \mathcal{P}_{\rm NH}$	1380	524	5.I	1362	104	1.3	13/5	290	5.5	13/0	262	15	
$\beta_{C=0,\gamma}$	201	04	1.4	202	111	1.4	541	32	1.3	234	90	0.5	
р _{С=0}	391	1.05	2.9	392	82	2.9	401	99	3.0	386	/5	3.6	
$\rho_{\rm NH}$	880	185	0.1	890	142	0.1	891	202	1.3	866	104	0.4	
$\rho_{\rm NH}$	826	41	0.5	838	31	0.7	-	-	-	-	-		
$\rho_{C=O}$	/51	58	1.1	/43	70	2.4	/32	21	1.3	/46	65	2.0	
$\rho_{\rm NH}$	6/4	41/	1.9	674	47	2.0	-	-	-	688	115	1.1	
$\rho_{\rm NH}$	612	94	0.8	628	93	0.7	626	190	1.4	619	136	1.9	

Таблица З

Интерпретация колебаний урацилового остова в димерах урацила и азаурацилов симметрии C_{2h}

Форма	Форма колеб. v _{эксп} [1,3]		Максимум		Мономер		7,8';8,7'		9,8';8,9'		9,10';10,9'	
колеб.		$v_{_{ m 5Kcn}}$ [1,3]	ν _{анг}	ИК	КР	ИК	КР	ИК	КР	ИК	КР	ИК
			1	1	Ураци	л		1			1	
<i>Q</i> ,β,γ	1643	1622	183	35	0.4	0.5	1.0	0.9	0.6	1.0	0.4	1.0
<i>Q</i> ,β	1360	1350	185	28	0.4	0.4	0.2	1.0	0.4	0.6	1.0	1.0
β,β _{CN}	1217	1198	158	39	0.1	0.3	1.0	0.2	0.1	0.6	0.1	1.0
$Q,\beta_{\rm CN}$	1184	1165	195	42	0.4	0.1	0.4	1.0	1.0	0.1	0.8	0.1
β,Q	1073	1060	18	19	0.3	0.3	1.0	1.0	0.6	0.6	0.5	0.6
γ	982	969	34	12	0.2	0.0	1.0	1.0	1.0	0.2	1.0	0.1
$\beta_{\rm CN}, Q$	958	947	53	15	0.2	0.2	0.2	0.2	0.2	0.3	1.0	1.0
γ	759	757	21	54	0.1	0.4	1.0	0.7	0.4	1.0	0.5	1.0
$\gamma, \beta_{C=O}$	536	535	75	20	0.1	0.2	1.0	1.0	0.9	0.4	0.7	0.4
γ	516	514	101	6.6	0.2	0.3	1.0	1.0	0.2	0.9	0.7	0.7
ρ	718	714	44	3.9	0.3	0.5	0.0	1.0	1.0	0.9	1.0	0.6
χ	395	396	38	4.4	0.7	0.4	0.6	0.5	0.8	0.8	1.0	1.0
5-Азаурацил												
<i>Q</i> ,β,γ	1643	1630	864	34	0.4	0.3	1.0	0.6	0.7	0.6	1.0	1.0
$Q,\beta_{C=O}$	1313	1349	543	18	0.4	0.2	0.4	0.3	1.0	0.8	0.7	1.0
$Q,\beta_{\rm NH}$	1177	1157	209	19	0.4	0.2	0.8	1.0	1.0	0.2	0.5	0.3
$Q,\beta_{C=O}$	1101	1076	39	5.6	0.2	0.4	1.0	0.4	0.1	0.8	0.3	1.0
γ,Q	1009	982	86	14	0.2	0.0	1.0	1.0	0.4	0.1	0.9	0.5
γ	937	926	78	6.7	0.1	0.4	0.4	0.4	1.0	0.7	0.2	1.0
<i>Q</i> ,γ	757	785	23	52	0.3	0.3	1.0	0.7	0.8	1.0	0.9	1.0
γ	557	557	49	12	0.1	0.4	0.2	1.0	1.0	0.6	0.6	0.7
γ	513	510	115	4.1	0.1	0.4	1.0	0.9	0.2	1.0	0.3	1.0
χ	402	413	46	3.4	0.7	0.3	0.5	0.4	0.9	0.8	1.0	1.0
				6	-Азаура	ацил						
$Q,\beta_{\rm NH}$	1616	1591	63	44	0.4	0.4	1.0	0.6	0.8	1.0	0.6	0.8
β	1329	1316	112	7.6	0.3	0.3	0.8	0.8	0.6	1.0	1.0	0.4
Q, B _{NH}	1231	1199	103	101	0.5	0.2	0.8	1.0	1.0	0.4	0.7	0.6
<i>Q</i> ,β	1099	1094	54	5.2	0.4	0.4	0.2	0.3	0.8	0.3	1.0	1.0
γ,Q	1002	987	87	19	0.1	0.0	1.0	1.0	0.6	0.5	0.0	0.1
$Q,\beta_{\rm NH}$	973	956	59	30	0.4	0.2	0.8	0.3	0.0	0.3	1.0	1.0
γ	750	730	41	50	0.2	0.3	1.0	0.7	0.6	1.0	0.6	0.8
$\beta_{C=O,\gamma}$	533	533	128	2.1	0.2	0.1	1.0	1.0	0.4	0.2	0.2	0.2
$\beta_{C=O,\gamma}$	518	518	109	24	0.1	0.2	0.2	1.0	0.2	0.5	1.0	0.3
ρ	-	874	42	2.9	0.5	0.4	0.5	0.7	0.4	0.5	1.0	1.0

Таблица 4

Интерпретация колебаний урацилового остова в димерах урацила и азаурацилов симметрии C_s

Форма	Форма колеб. v _{эксп} [1,3]		Максимум		8,7';9,8'		10,7';9;8'		10,9';9,8'		10,11';9,10'	
колеб.		ν _{aнr}	ИК	КР	ИК	КР	ИК	КР	ИК	КР	ИК	КР
			1	1	Урацил	I	1		1		1	
$Q,\beta_{C=O}$	1643	1631	176	28	0.4	0.8	0.7	1.0	0.8	0.8	1.0	0.7
<i>Q</i> ,β	1360	1347	73	56	1.0	0.3	1.0	0.5	0.1	0.6	0.1	1.0
<i>Q</i> ,β	1184	1164	200	24	0.7	0.9	0.6	1.0	0.9	0.1	1.0	0.2
$Q, \beta_{C=O}$	1073	1084	37	21	0.4	0.7	0.4	0.9	0.3	0.5	1.0	1.0
γ,Q	982	984	35	4.9	0.9	1.0	1.0	1.0	1.0	0.3	1.0	0.2
γ	958	930	37	9.4	0.5	0.4	1.0	1.0	0.9	0.9	0.8	0.9
<i>Q</i> ,γ	759	786	12	54	1.0	0.9	1.0	0.9	0.7	1.0	0.8	0.9
γ	536	560	59	12	0.8	1.0	1.0	1.0	1.0	0.6	0.6	0.8
γ	516	515	89	8.4	0.7	0.9	1.0	1.0	0.4	0.8	0.8	0.6
ρ	958	960	43	3.9	0.5	1.0	0.6	0.8	1.0	0.8	0.6	0.6
χ	395	416	41	4.5	0.7	0.6	0.8	0.7	0.9	0.9	1.0	1.0
				5-	Азаурат	цил						
$Q,\beta_{\rm NH}$	1643	1631	833	27	0.8	0.7	1.0	1.0	0.8	1.0	_	_
$Q,\beta_{C=O}$	1313	1347	429	28	1.0	0.6	0.6	1.0	0.5	0.3	_	_
<i>Q</i> ,β	1177	1164	185	16	1.0	0.7	0.6	1.0	0.9	0.3	_	-
$Q,\beta_{C=O}$	1101	1084	29	4.6	0.9	0.8	1.0	0.9	0.3	1.0	_	_
γ,Q	1009	984	80	10	0.7	0.6	1.0	1.0	0.7	0.4	_	_
γ	937	930	56	5.7	1.0	0.7	0.5	0.8	0.8	1.0	_	_
<i>Q</i> ,γ	757	786	21	51	0.9	0.9	0.8	0.9	1.0	1.0	_	_
γ	557	560	46	9.5	1.0	0.9	0.5	1.0	0.8	0.9	_	_
γ	513	515	65	4.8	0.7	0.9	1.0	1.0	0.5	0.8	_	_
ρ	_	960	5.1	4.9	1.0	1.0	0.6	0.6	0.9	0.7	_	_
χ	402	416	45	2.1	0.8	0.9	0.8	1.0	1.0	0.5	_	_
				6-	Азаурал	цил						
$Q,\beta_{\rm NH}$	1616	1593	53	42	0.8	0.7	0.8	0.7	0.8	0.9	1.0	1.0
β	1329	1315	95	22	0.7	0.3	1.0	0.2	0.9	0.2	0.6	1.0
$Q,\beta_{\rm NH}$	1231	1204	114	74	0.7	0.8	0.6	1.0	0.7	0.7	1.0	1.0
<i>Q</i> ,β	1099	1099	97	4.4	0.3	0.5	0.4	1.0	0.5	0.9	1.0	0.9
γ,Q	1002	990	63	8.2	1.0	1.0	0.7	0.8	0.4	0.4	0.2	0.4
$Q,\beta_{\rm NH}$	973	964	64	19	0.3	0.5	0.8	1.0	0.5	1.0	1.0	0.9
γ	750	730	31	44	1.0	1.0	1.0	0.8	0.8	1.0	0.8	0.9
$\beta_{C=O,\gamma}$	533	539	111	1.4	0.6	1.0	1.0	1.0	0.3	0.9	0.8	0.4
$\beta_{C=O,\gamma}$	518	521	55	15	0.4	1.0	0.5	0.9	1.0	0.6	0.4	0.6
ρ	880	881	45	2.7	0.2	0.4	1.0	1.0	0.5	0.6	0.6	0.7

Расщеплению и сдвигу подвержены полосы, интерпретированные как валентные колебания связей С=О ($Q_{C=O}$) и плоские деформационные колебания валентных углов СNH (β_{NH}). Указанные колебания попадают в диапазон 1780–1730 см⁻¹ и 1500–1350 см⁻¹ соответственно. Интенсивность полос указанных колебаний может быть использована для спектроскопической идентификации соединений в случае, если щель между полосами превышает величину ~50 см⁻¹.

Таким образом, наиболее надежным признаком спектроскопической идентификации димеров следует признать положение и интенсивность полос неплоских деформационных колебаний связей N-H ($\rho_{\rm NH}$).

Отметим, что оценка положения полос, приведенная в табл. 1–4, связана с центром интервала их расщепления. Отклонение не превышает величины ~10 см⁻¹ для полос, интерпретированных как колебания урацилового остова, а также для всех полос в диапазоне ниже 1300 см⁻¹. Отсюда и отраженная в табл. 1–4 характеристичность указанных фундаментальных колебаний по частоте. Указанные колебания являются также характеристичными и по форме. Признаками спектроскопической идентификации в этом случае могут служить их интенсивности полос в спектрах ИК и КР.

О характере межмолекулярного взаимодействия можно судить по смещениям полос, интерпретированных как валентные (q_{NH}) и неплоские деформационные (ρ_{NH}) колебания связей N-H. Валентные колебания смещаются в длинноволновый диапазон на величину порядка ~300 см⁻¹, деформационные – в коротковолновый диапазон на величину ~200 см⁻¹. Учитывая расчетные значения для длины связей между атомами водорода и кислорода, участвующих в образовании димеров, можно сделать вывод о наличии водородных связей между мономерными молекулами в димерах урацила и азаурацилов.

В табл. 3 и 4 применительно к мономерам и димерам даны относительные значения интенсивностей полос по отношению к максимальным величинам для конкретного колебания. Такое представление позволяет выявить: 1) возможность использования полосы в качестве признака спектроскопической идентификации соединений (как правило, это сильные по интенсивности полосы); 2) димеры с наибольшей по величине относительной интенсивностью (доминирующие по выявленному признаку); 3) влияние процесса димеризации на основные спектроскопические характеристики полос мономеров, составляющих димер.

Проведенные модельные расчеты дают основание к использованию метода теорий функционала плотности DFT в варианте B3LYP для построения структурно-динамических моделей соединений ряда урацила и решения задачи спектроскопической идентификации водородносвязанных димеров соединений. Показано, что образование димеров приводит к существенному смещению полос, интерпретированных как валентные и деформационные колебания связи N-H, участвующей в образовании водородной связи. Для спектроскопической идентификации димеров можно использовать интенсивности полос в колебательных спектрах, а также положение полос в диапазоне 900-600 см⁻¹, интерпретированных как неплоские деформационные колебания связей N-Н. Более детальный анализ требует учета прототропной таутомерии урацила и азаурацилов. Отметим однако, что полосы, отвечающие валентным колебаниям связей N-H, являются характеристичными по частоте, форме и при наличии (всегда [12]) в равновесных смесях NH-таутомеров обеспечивают идентификацию веществ, в том числе на реализованном в настоящей работе уровне рассмотрения. Диапазон проявления частот скелетных колебаний циклов амидных (лактамных) таутомеров одинаков для всех рассмотренных и подобных им шестичленных азациклов и определяется π-электронами колец [5]. В задачах спектроскопической идентификации их использование затруднено. Указанные колебания проявляются в спектральном диапазоне ~1600-1300 см⁻¹ как полосы сильной интенсивности в ИК спектрах. Отметим, что аналогичный характер поведения полос скелетных колебаний имеет место и в имидольном (лактимном) таутомере, а также в гипотетических формах с оляцией лишь одной из карбонильных групп. Для спектральной идентификации всех трёх названных ОН-содержащих форм можно использовать полосы, интерпретированные как валентные ($\sim 3650 - 3550 \text{ см}^{-1}$), плоские деформационные (~1250–1200 см⁻¹) и крутильные (~550-150 см⁻¹) колебания связей О-Н. Разброс значений определяется взаимным расположением гидроксильной группы и связи N-H в моногидроксилированных структурах. Димеризация моно-ОН-форм приводит к существенному сдвигу полос, интерпретированных как валентные и неплоские деформационные колебания связей N-H, участвующих в образовании димеров.

Отметим, что эксперимент по колебательным спектрам урацила в замороженных матрицах подтверждает возможность наличия различных таутомерных форм. Наблюдаются группы полос с размерами щелей в каждой группе ~15-5 см⁻¹. В газовой фазе каждая такая группа проявляется в виде полосы сплошного контура [13].

Список литературы

- Fulara J., Nowak M. J., Lapinski L. Theoretical and matrix-isolation experimental study of the infrared spectra of 5-azauracil and 6-azauracil // Spectrochim. Acta. 1991. Vol. 47A, № 5. P. 595–613.
- Potter B. S., Palmer R. A., Withnall R., Chowdhry B. Z. Aza analog of nucleic acid bases: Infrared spectra of 5-azauracil and crystal structure of 5-azauracil monohydrate // New J. Chem. 1999. Vol. 23, № 1. P. 117–122.
- 3. *Тен Г. Н., Бурова Т. Г., Баранов В. И*. Анализ ИК спектров и водородных связей урацила // Журн. структур. химии. 2001. Т. 42, № 4. С. 666–676.
- Mitran R. A., Bascornea A. C. Some unusual spectral properties of 6-azauracil derivatives // U.P.B. Sci. Bull. Ser. B. 2011. Vol. 73, № 1. P. 67–74.
- Свердлов Л. М., Ковнер М. А., Крайнов Е. П. Колебательные спектры многоатомных молекул. М. : Наука, 1970. 550 с.
- Элькин П. М., Пулин О. В., Джалмухамбетова Е. А. Структурно-динамические модели и ангармонический анализ колебательных состояний замещенных урацила // Вестн. Сарат. гос. тех. ун-та. 2005. № 4(9). С. 36–45.
- Элькин П. М., Эрман М. А., Пулин В. Ф. Анализ колебательных спектров метилзамещенных урацила в ангармоническом приближении // Журн. прикл. спектроск. 2006. Т. 73, № 4. С. 431–436.

- Элькин М. Д., Джалмухамбетова Е. А., Гречухина О. Н. Проявление межмолекулярного взаимодействия в димерах урацила // Изв. Сарат. ун-та. Нов. сер. Сер. Физика. 2008. Т. 8, вып. 2. С. 24–30.
- Hoy A. R., Mills I. M., Strey G. Anharmonic force constants calculation // J. Mol. Phys. 1972. Vol. 21, № 6. P. 1265–1290.
- Элькин М. Д., Бабков Л. М. Учет ангармонического смещения полос в модельных расчетах колебательных спектров димеров с водородной связью // Изв. Сарат. ун-та. Нов. сер. Сер. Физика. 2011. Т. 11, вып. 1. С. 20–25.
- 11. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann R. E., Burant J. C., Dapprich S., Millan J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malich D. K., Rabuck A. D., Raghavachari K., Foresman J.B., Cioslowski J., Ortiz J. V., Baboul A. G., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzales C., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andreas J. L., Head-Gordon M., Reploge E. S., Pople J. A. Gaussian 03, Revision B.03. Gaussian, Inc., Pittsburgh, PA, 2003.
- Общая органическая химия / под ред. Д. Бартона, У. Д. Оллиса. Т. 10. Нуклеиновые кислоты, аминокислоты, пептиды, белки / Е. Хаслам, Г. М. Блэкборн, Р. Т. Уокер, Д. В. Хатчинсон, П. М. Харди, Д. Т. Элмор, Б. В. Бикрофт, Г. Лоу, Р. С. Шепард, Дж. С. Баррет, А. Дж. Кирби, Г. К. С. Вуд, Б. Т. Голдинг; под ред. Е. Хаслама. М. : Химия, 1986. 704 с.
- 13. Colarusso P., Zhang KeQing, Guo Bujin, Bernath P. F. The infrared spectra of uracil, thymin, and adenine in the gas phase // Chem. Phys. Lett. 1997. Vol. 269, № 1–2. P. 39–48.

УДК 543:544.42

ПРИМЕНЕНИЕ ЦИКЛОДЕКСТРИНОВ В ТОНКОСЛОЙНОЙ ХРОМАТОГРАФИИ НЕКОТОРЫХ АНТИОКСИДАНТОВ ПОЛИФЕНОЛЬНОЙ ПРИРОДЫ

О. Н. Сорокина¹, Е. Г. Сумина², А. В. Петракова², В. З. Угланова²

¹Саратовский государственный аграрный университет им. Н. И. Вавилова E-mail: Sorokina-O-N@yandex.ru ²Саратовский государственный университет E-mail: SuminaEG@yandex.ru, UglanovaVZ@mail.ru

Методом тонкослойной хроматографии изучены хроматографические свойства некоторых антиоксидантов полифенольной природы – кверцетина и рутина – в циклодекстриновых подвижных фазах при варьировании природы неподвижной фазы, природы и концентрации циклодекстринов, а также природы и концентрации модификаторов циклодекстрино-

вых подвижных фаз (органического растворителя и сильного электролита). Найдены оптимальные хроматографические системы и условия их применения в TCX исследуемых флавоноидов.

Ключевые слова: тонкослойная хроматография, флавоноиды, кверцетин, рутин, циклодекстрины.

© Сорокина О. Н., Сумина Е. Г., Петракова А. В., Угланова В. З., 2013