

- Premanathan M., Karthikeyan K., Jeyasubramanian K., Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation // Nanomed.: Nanotechnol. Biol. Med. 2011. Vol. 7, № 2. P. 184–192.
- 7. Morones J. R., Elechiguerra J. L., Camacho A., Holt K., Kouri J. B., Ramires T. J., Yacaman M. J. The bactericidal effect of silver nanoparticles // Nanotechnology. 2005. Vol. 16. P. 2346–2353.
- 8. *Sunada K., Watanabe T., Hashimoto K.* Studies on photokilling of bacteria on TiO₂ thin film // J. Photochem. Photobiol. A. 2003. Vol. 156. P. 227–233.
- Kiwi J., Nadtochenko V. Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO₂ interface by ATR-FTIR and laser kinetic spectroscopy // Langmuir. 2005. Vol. 21. P. 4631–4641
- Chirita M., Grozescu I. Fe₂O₃ nanoparticles, physical properties and their photochemical and photoelectrochemical applications // Chem. Bull. «POLITEHNICA». 2009. Vol. 54(68), № 1. P. 1–8.
- Huang W. -C., Tsai P. -J., Chen Y. -C. Functional Gold Nanoclusters as Antimicrobial Agents for Antibioticresistant Bacteria // Nanomedicine. 2007. Vol. 2. P. 777-787.
- Van der Meulen F.W., Ibrahim K., Sterenborg H.J.C.M., Alphen L.V., Maikoe A., Dankert J. Photodynamic destruction of Haemophilus parainfluenzae by endogenously produced porphyrins // J. Photochem. Photobiol. B. 1997. Vol. 40. P.204–208.
- Ashkenazi H., Malik Z., Harth Y., Nitzan Y. Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue ligh // Immunol. Med. Microbiol. 2003. Vol. 35. P. 17–24.
- 14. Enwemeka C. S., Williams D., Hollosi S., Yens D., Enwemeka S. K. Visible 405-nm SLD light photo-destroys

- meticillin-resistance *Staphylococcus aureus in vitro* // Lasers Surg. Med. 2008. Vol. 40. P. 734–737.
- Tuchina E. S., Tuchin V. V. Low-intensity LED (625 and 405 nm) and laser (805 nm) killing of *Propionibacterium* acnes and *Staphylococcus epidermidis* // Proceedings of SPIE. 2009. Vol. 7165. P. 716501–716507.
- Sailer R., Strauss W. S. L., Konig K., Ruck A., Steiner R. Correlation between porphyrin biosynthesis and photodynamic inactivation of *Pseudomonas aeruginosa* after incubation with 5-aminolevulinic acid. // J. Photochem. Photobiol. B. 1997. Vol. 36. P. 236–242.
- 17. Clauditz A., Resch A., Wieland K. P., Peschel A., Götz F. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress // Infection and immunity. 2006. Vol. 74, № 8. P. 4950–4953.
- Schrand A. M., Rahman M. F., Hussain S. M. Schlager J. J., Smith D. A., Syed A. F. Metal-based nonoparticles and their toxicity assessment // Nanomed. Nanobiotech. 2010. Vol. 2. P. 544–568.
- Dehner C., Barton L., Maurice P. A., Dubois J. L. Size-dependent bioavailability of hematine (α-Fe₂O₃) nanoparticles to common aerobic bacteria // Environ. Sci / Technol. 2011. Vol. 45. P. 977–983.
- Jiang J., Oberdrster G., Elder A., Gelein R., Mercer P., Biswas P. Does nanoparticle activity depend upon size and crystal phase? // Nanotoxicology. 2008. Vol. 2. P. 33–42.
- Zharov V. P., Kim J. -W., Curiel D. T., Everts M. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy // J. Nanomed.: Nanotechnol. Biol. Med. 2005. Vol. I. P. 326–345.
- 22. Larson T. A., Bankson J., Aaron J., Sokolov K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI / optical imaging and photothermal therapy of cancer cells // Nanotechnology. 2007. Vol. 18.

УДК 612-057.875

ПСИХОФИЗИОЛОГИЧЕСКАЯ РЕАКТИВНОСТЬ НА ЭКЗАМЕНАЦИОННЫЙ СТРЕСС СТУДЕНТОВ-СПОРТСМЕНОВ ПЕДАГОГИЧЕСКОГО ВУЗА

С. С. Павленкович¹, Л. К. Токаева²

¹Саратовский государственный университет E-mail: svpavlin@yandex.ru ²Саратовский государственный медицинский университет E-mail: normalf@yandex.ru

Изучены психоэмоциональный статус и функциональное состояние студентов-спортсменов при экзаменационном стрессе. Установлено, что основой психоэмоционального напряжения спортсменов является личностная тревожность. Выявлена четкая зависимость между уровнем личностной тревожности студентов-спортсменов и характером их реактивности на экзаменационный стресс.

Ключевые слова: студенты, адаптация, сердечно-сосудистая система, экзаменационный стресс, личностная и реактивная тревожность.

Psychophysiological Reactivity to Examination Stress Student-Athletes Pedagogical University

S. S. Pavlenkovich, L. K. Tokaeva

Studied the psycho-emotional status and functional status of studentathletes in a situation of examination stress. It was established that the basis of psycho-emotional stress athletes is trait anxiety. A clear relationship between the level of personal anxiety of students-

athletes and the nature of their reactivity to examination stress. **Key words:** students, adaptation, cardiovascular system, examination stress, trait anxiety and reactive.

В современных условиях процесс обучения в высшей школе должен быть направлен на формирование самостоятельной, инициативной, творческой и здоровой личности. Поэтому проблема изучения физиологических механизмов адаптации и резервных возможностей организма студентов к условиям обучения в вузе представляется весьма актуальной [1–4].

Адаптация студентов факультета физической культуры к обучению в вузе имеет свою специфику, так как образовательный процесс подготовки этих специалистов характеризуется не только интенсивными умственными, но и физическими нагрузками. Бюджет времени студентов факультета физической культуры с учётом тренировочного процесса составляет 9–12 ч в день.

В системе современного вузовского образования России зачёты и экзамены занимают важную роль не только в плане контроля полученных знаний, но также несут обучающую, воспитательную и мотивирующую функции. Большинство студентов выделяют именно контролирующую функцию экзамена и, следовательно, относятся к нему негативно. Экзамены для студентов – это критический момент в учебной деятельности. В этот период к интеллектуально-эмоциональной сфере студентов предъявляются повышенные требования. Эмоциональное напряжение во время экзаменационной сессии является своеобразным длительно действующим стрессором [5, 6]. Экзаменационный стресс может выступать и как мобилизующий фактор, стимулируя студентов к проявлению всех своих знаний и личностных резервов. Роль личностных особенностей человека в процессе адаптации в настоящее время не вызывает сомнения [7].

Проблема экзаменационного стресса неоднократно рассматривалась в литературе, посвящённой влиянию учебной нагрузки на психическое состояние организма [8–11]. Однако четкие представления об этом отсутствуют, поэтому характер и содержание изменений в функциональном состоянии организма студентов продолжает оставаться одной из актуальных проблем.

Большую роль в организации адаптационного ответа играют работоспособность головного мозга, подвижность нервных процессов, эмоциональность и тревожность. Они во многом определяют формы психофизиологической адаптации на всех этапах адаптационного процесса. Сердечно-сосудистая система (ССС) является обязательным участником приспособительных реакций орга-

низма к условиям внешней среды. Уровень ее функционирования можно рассматривать как ведущий показатель, отражающий равновесие организма со средой [12].

В связи с вышеизложенным целью работы явилось изучение особенностей психофизиологической реактивности студентов-спортсменов на экзаменационный стресс в условиях обучения в педагогическом вузе.

Материалы и методы

Исследования психофизиологической реактивности студентов-спортсменов на экзаменационный стресс проводились на базе Педагогического института Саратовского государственного университета имени Н. Г. Чернышевского на кафедре валеологии и основ медицинских знаний. Контингент исследований составили юноши – студенты 1-3 курсов факультета физической культуры, обучающиеся по специальности «Физическая культура». Общее число обследованных составило 300 человек. Из них 105 студентов с 1-го курса, 102 со 2-го курса и 93 с 3-го курса. Оценка психоэмоционального статуса студентов осуществлялась с помощью теста Ч. Д. Спилбергера, личностного опросника Г. Айзенка, тестового опросника САН и теста Люшера [13]. Функциональное состояние ССС оценивалось по показателям частоты сердечных сокращений (ЧСС), систолического, диастолического и пульсового артериального давления (САД, ДАД и ПД), коэффициента выносливости (КВ) [14], вегетативного индекса Кердо (ВИК) [15], систолического (СО) и минутного (МО) объемов крови. Для более полной характеристики адаптационных возможностей организма рассчитывался адаптационный потенциал (АП) Р. М. Баевского [16]. Регистрация психофизиологических и вегетативных показателей производилась в одно и то же время суток во время обычного учебного процесса в день практических занятий по анатомии и физиологии человека, до экзамена и сразу после него. Исследования проводились в соответствии с требованиями Хельсинской декларации Всемирной медицинской ассоциации (2000). Статистическую обработку данных проводили с помощью пакета программ «Statistica-5».

Результаты и их обсуждение

Для установления контрольного уровня психофизиологических показателей в межсессионный период на практических занятиях по анатомии и физиологии человека был проведен фоновый эксперимент.

С помощью теста Ч. Д. Спилбергера среди студентов 1–3-го курсов были выявлены 26,3% юношей с высоким (1 группа), 44,7% – со средним

Биология 71

(2 группа) и 29% — с низким (3 группа) уровнем личностной тревожности (табл.1). По данным наших исследований, в группу с высокой ЛТ вошли спортсмены, занимающиеся боксом, каратэ, греко-римской борьбой, в группу со средней ЛТ — студенты-легкоатлеты, а в группу с низким уровнем ЛТ спортсмены игровых видов (баскетбол, футбол, гандбол, волейбол). Высокий уровень

ситуативной (реактивной) тревожности (РТ), по Спилбергеру, установлен у 17% обследованных, средний — у 49,7% и низкий — у 33,3% юношей. Отметим, что в группе с высокой ЛТ большинство юношей имеют высокие показатели РТ. Большинство спортсменов 2 группы характеризуются средними значениями РТ, тогда как все представители 3 группы имеют низкие показатели РТ (p < 0,05).

Таблица 1 Психоэмоциональный статус студентов-спортсменов с различным уровнем тревожности в баллах ($M\pm m$)

Показатели	Уровень тревожности										
	высокий (<i>n</i> = 79)			средний (<i>n</i> = 134)			низкий (<i>n</i> = 87)				
	Этап исследования										
	1	2	3	1	2	3	1	2	3		
Личностная тревожность	$50,4 \pm 0,3$	51,0 ± 0,2	$50,1 \pm 0,2$	$37,7\pm0,7\infty$	$38,9 \pm 0,6\infty$	$37,9 \pm 0,3\infty$	20,6 ± 0,4∞	$21,5 \pm 0,3\infty$	$21,1 \pm 0,4\infty$		
Реактивная тревожность	$46,2 \pm 0,3$	60,6 ± 0,3*	48,4 ± 0,2 ■	$35,5 \pm 0,6\infty$	47,2 ± 0,6*∞	37,8 ± 0,3 •∞	19,1 ± 0,3∞	31,8 ± 0,4*∞	22,7 ± 0,4•∞		
Нейротизм по Айзенку	$18,0 \pm 0,1$	18,4 ± 0,1*	$18,1 \pm 0,2$	$10,2 \pm 0,2\infty$	11,2 ± 0,2*∞	$10,9 \pm 0,2\infty$	4,8 ± 0,09∞	7,2 ± 0,2*∞	6,64 ± 0,2•∞		
Тревожность по Люшеру	$11,2 \pm 0,3$	12,2 ± 0,3*	9,27 ± 0,3 ■	$2,94\pm0,2\infty$	3,89 ± 0,2*∞	3,01± 0,2•∞	$0,53 \pm 0,03\infty$	$1,65 \pm 0,04*\infty$	1,25 ± 0,02•∞		
Самочувствие	$2,7 \pm 0,05$	$2,6 \pm 0,05$	3,1 ± 0,07 ■	$4,5\pm0,06\infty$	4,2 ± 0,08*∞	4,32 ± ,06•∞	5,73 ± 0,04∞	5,46±0,05*∞	5,55 ± 0,06•∞		
Активность	$3,3 \pm 0,02$	3,21 ± 0,02*	3,6 ± 0,05	$4,5 \pm 0,06 \infty$	$4,46 \pm 0,07 \infty$	$4,51 \pm 0,06 \infty$	5,72±0,04∞	5,34±0,06*∞	5,51 ± 0,06•∞		
Настроение	$3,5 \pm 0,05$	$3,35 \pm 0,05*$	3,64±0,05•	5,2 ± 0,06∞	4,85±0,06*∞	4,96 ± 0,06•∞	6,3 ± 0,04∞	5,71 ± 0,06*∞	5,99 ± 0,06•∞		

Примечание. 1 – в день практических занятий, 2 – до экзамена, 3 – после экзамена. * – p < 0,05 – сравнивались показатели в день практических занятий и до экзамена; • – p < 0,05 – сравнивались показатели до и после экзамена; ∞ – p < 0,05 – различия достоверны относительно показателей юношей с высоким уровнем ЛТ.

По результатам личностного опросника Г. Айзенка, выявлено 8% юношей с очень высоким (19,8 \pm 0,2 баллов), 25% — с высоким (16,9 \pm 0,2 баллов), 34% — со средним (10,2 \pm 0,1 баллов) и 32% — с низким (4,7 \pm 0,09 баллов) уровнем нейротизма. Различия между группами были статистически достоверными (p < 0,05). Состояние стресса, согласно цветовому тесту Люшера, выявлено у всех обследуемых с высокой ЛТ (10,4 \pm \pm 0,2 баллов), у 26% — со средней ЛТ (8,7 \pm 0,2 баллов) и у 9% — с низкой ЛТ (6,9 \pm 0,2 баллов).

Результаты теста САН свидетельствуют о вариабельности самочувствия, активности и настроения у юношей-спортсменов с различным уровнем ЛТ. Так, большинство юношей с высокой ЛТ определяют свое самочувствие ниже среднего, а активность и настроение – как средние. В группе юношей со средней ЛТ преобладают средние значения показателей САН. Субъективная оценка по всем параметрам САН выше у спортсменов с низким уровнем ЛТ. Юноши этой группы определяют свое самочувствие и активность выше среднего, а настроение как высокое. Однако при детальном анализе результатов теста САН в группе с высокой ЛТ выявлены юноши со средними, ниже среднего и низкими показателями, а в группах со средней

и низкой ЛТ — со средними, выше среднего и высокими значениями всех параметров. Следует отметить, что настроение студентами во всех группах оценивается выше, чем самочувствие и активность (см. табл. 1).

Оценка функционального состояния ССС показала, что в начале практических занятий при отсутствии стрессового воздействия большинство гемодинамических показателей у юношей во всех возрастных группах не выходят за пределы физиологической нормы. Однако обследованные юноши с разным уровнем ЛТ отличались по некоторым функциональным показателям (табл. 2).

По данным наших исследований, у спортсменов со средней и низкой ЛТ зарегистрированные величины ЧСС, САД, ДАД, ПД в состоянии покоя указывают на экономную работу системы кровообращения. Среднее значение КВ указывает на большие функциональные возможности ССС, а среднее отрицательное значение ВИК — на четко выраженное влияние парасимпатического отдела вегетативной нервной системы (ВНС). У юношей с высокой ЛТ отмечается менее экономная работа системы кровообращения, что выражается в достоверно более высоких средних значениях ЧСС, САД, ДАД и ПД по сравнению с представителями

72 Научный отдел

Таблица 2 Реактивность ССС студентов-спортсменов с различным уровнем тревожности на экзаменационный стресс ($M\pm m$)

	Уровень тревожности									
Показа-	ВЫ	сокий $(n=7)$	79)	cp	едний (<i>n</i> = 13	34)	низкий (<i>n</i> = 87)			
тели	Этап исследования									
	1	2	3	1	2	3	1	2	3	
ЧСС, уд/мин	$71,1 \pm 0,4$	93,5 ± 0,4*	74,1 ± 0,3 ■	$66,7 \pm 0,3\infty$	82,7 ± 0,3*∞	72,2 ± 0,1 •∞	$62,5 \pm 0,3\infty$	80,6 ± 0,3*∞	70,9 ± 0,4•∞	
САД, мм рт. ст.	119,8 ± 0,4	139,1 ± 0,5*	123,5 ± 0,4	$118,6 \pm 0,5$	134,6±0,3*∞	123,1 ± 0,4•	$114,4 \pm 0,5\infty$	131,7±0,3*∞	121,3 ±0,4•∞	
ДАД, мм рт. ст.	76,2 ±0,5	84,9 ± 0,3*	79,4 ± 0,3 ■	$74,5 \pm 0,5$	83,5 ± 0,2*	78,3 ± 0,2 ■	$73,2 \pm 0,4\infty$	80,6 ± 0,4*∞	74,8 ±0,5•∞	
ПД, мм рт. ст.	$43,6 \pm 0,7$	51,5 ± 0,5*	46,9 ± 0,6 ■	42,8 ± 0,6	50,9 ± 0,3*	45,0 ± 0,4 ■	$41,2 \pm 0,5$	51,3 ± 0,3*	46,5 ± 0,5 ■	
КВ, усл. ед.	$16,6 \pm 0,2$	18,5 ± 0,2*	16,2 ± 0,3 ■	$16,1 \pm 0,3$	17,3 ± 0,1*	14,6 ± 0,09•∞	$15,6 \pm 0,2\infty$	$15,9\pm0,1\infty$	14,0 ± 0,09•	
ВИК, %	$-7,6 \pm 0,2$	9,02 ± 0,5*	-7,5 ± 0,1 ■	$-12,1 \pm 0,2\infty$	4,07 ± 0,3*	-8,5 ± 0,2 ■	$-17,6\pm0,3\infty$	$-0,22 \pm 0,3*$	-5,6 ± 0,1■	
СО, мл	$66,4 \pm 0,6$	65,2 ± 0,4	$66,2 \pm 0,3$	$66,9 \pm 0,5$	65,6 ± 0,4	65,8 ± 0,4	67,0 ± 0,4	$67,5 \pm 0,3$	68,7 ± 0,4	
МО, л/мин	$4,72 \pm 0,03$	6,1 ± 0,04*	4,9 ± 0,03 ■	$4,5\pm0,04\infty$	5,7 ± 0,05*	4,8 ± 0,04 ■	$4,2\pm0,04\infty$	5,4 ±0,04*∞	4,8 ± 0,03 ■	
АП, балл	$2,09 \pm 0,01$	2,68 ± 0,01*	2,2 ± 0,01 •	$2,0\pm0,01\infty$	$2,54 \pm 0,01*$	2,32 ± 0,01•	$1,89 \pm 0,01\infty$	2,39±0,01*∞	2,09 ± 0,01•	

Примечание. 1-в день практических занятий, 2-до экзамена, 3- после экзамена. *-p < 0.05- сравнивались показатели в день практических занятий и до экзамена; -p < 0.05- сравнивались показатели до и после экзамена; -p < 0.05- различия достоверны относительно показателей юношей с высоким уровнем ЛТ.

двух других групп (p < 0,05). Кроме того, у данного контингента обследуемых на снижение резервных возможностей ССС указывают достоверно более высокие показатели КВ и МО по сравнению с показателями юношей с низкой ЛТ (p < 0,05). Проведенная оценка нейровегетативного статуса юношей по показателю ВИК выявила большой разброс индивидуальных значений данного параметра: у большинства (83,3%) юношей 1–3-го курсов преобладают влияния парасимпатического отдела ВНС, у 11,7% — влияния симпатического отдела и у 5% обследованных сбалансированы влияния ВНС. Средние значения АП у юношей во всех группах свидетельствуют об удовлетворительной адаптации ССС к факторам среды.

По результатам проведенных исследований, в день экзамена было установлено, что в ситуации его ожидания у юношей наблюдается пик эмоционального напряжения. Психоэмоциональное напряжение, возникающее в ситуации ожидания экзамена, сказывается на показателях тревожности (см. табл. 1). Большинство средних показателей психических функций в ситуации экзамена оказались ухудшенными по сравнению с контрольными. У 54% юношей зафиксированы

высокие значения РТ и у 36,7% — умеренные и лишь у 9,3% — низкие. Отметим, что юноши с высокой ЛТ отличаются повышенной нервозностью и беспокойством, так как у них зафиксированы достоверно самые высокие показатели РТ по сравнению со сверстниками двух других групп (p < 0,05). В день проведения экзамена свое самочувствие они оценивают ниже среднего, активность и настроение как средние. 61,9% юношей со средней ЛТ имеют высокую РТ, 34,4% — среднюю РТ и 3,7% — низкую РТ. В данной группе преобладают средние оценки самочувствия, активности и настроения, но они достоверно ниже контрольных показателей (p < 0,05).

У большинства (73,6%) юношей с низкой ЛТ зарегистрирована умеренная РТ и у 26,4% — низкая РТ, что свидетельствует об их собранности и уравновешенности. По результатам тестирования преобладают выше среднего оценки самочувствия, настроения и высокие оценки активности. По результатам исследований во всех группах отмечено повышение нейротизма, по Айзенку, и тревожности, по Люшеру (см. табл. 1).

Во время экзамена значительные статистически значимые изменения отмечены во всех

Биология 73

регистрировавшихся вегетативных показателях (см. табл. 2). В наших исследованиях перед экзаменом увеличение частоты сердечных сокращений наблюдалось у студентов во всех группах. Однако у студентов с высокой ЛТ отмечено увеличение ЧСС на 31,7%, у юношей со средней ЛТ — на 23,9%, а у спортсменов с низкой ЛТ — на 28,9% (p < 0,05), что в целом согласуется с данными других авторов, отмечавших тахикардию у студентов во время экзаменов [17, 18]. Аналогичная тенденция отмечена и в изменении показателей артериального давления. Перед сдачей экзамена у юношей-спортсменов во всех группах наблюдалось повышение САД, ДАД и ПД. Перед экзаменом ПД увеличивалось в основном за счёт значительного повышения систолического давления. Это говорит о том, что приспособление к эмоциональному стрессу происходит за счёт увеличения ударного объёма сердца. Отметим, что наибольшее изменение показателей АД, КВ и МО в сторону увеличения сильнее выражено у студентов с высокой ЛТ (p < 0.05). Изменения ВИК были вполне закономерными и указывали на существенное повышение тонуса симпатического отдела ВНС у спортсменов с высокой и средней ЛТ по сравнению с юношами с низкой ЛТ (p < 0.05). По показателю АП, напряжение механизмов адаптации выявлено у юношей с высокой ЛТ, в то время как у юношей со средней и низкой ЛТ адаптация к стрессовой ситуации проходит удовлетворительно (см. табл. 2).

После экзамена выявлена тенденция к нормализации психофизиологических и функциональных показателей (см. табл. 1 и табл. 2), но полного восстановления не происходит, поскольку после прекращения стрессового воздействия организм в течение определенного времени продолжает поддерживать механизмы, помогающие справиться со стрессом.

Таким образом, ситуация экзамена приводила к значительному повышению уровня ситуативной тревожности, в первую очередь у студентов-спортсменов с высокой ЛТ. Высокий уровень тревожности, в свою очередь, вызывал повышение уровня нейротизма. Далее в ходе исследований было установлено, что между показателями ЧСС и АД в межсессионный период и в условиях экзамена имеются существенные различия. Выявленные сдвиги показателей сердечно-сосудистой системы могут быть обусловлены активизацией регуляторных механизмов симпатического отдела ВНС [19]. Наряду с этим в полученных психофизиологических сдвигах и состоянии ССС важную роль играет состояние коры головного мозга и ближайшей подкорки [20].

Полученные результаты могут быть использованы при организации учебного процесса в вузе. Кроме того, учет уровня тревожности поможет определить выбор специализации на факультете физической культуры.

Список литературы

- 1. Агаджанян Н. А., Макарова И. И. Среда обитания и реактивность организма. Тверь, 2001. 176 с.
- 2. *Казин Э. М., Иванов В. И, Литвинова Н. А. и др.* Влияние психофизиологического потенциала на адаптацию к учебной деятельности // Физиология человека. 2002. Т. 28, № 3. С. 23–29.
- Андреев Д. А., Нестеренко А. И., Васильев В. В.
 Физиологическая, психоэмоциональная и профессиональная адаптация студентов в медицинских учебных
 заведениях // Физиология человека. 2007. Т. 33, № 4.
 С. 128–131.
- 4. Трохимчук Л. Ф., Шквирина О. И, Измайлова М. А. Особенности физиологической адаптации студентов ингушской национальности к учебной деятельности в вузе // Физиология адаптации: материалы 2-й Всерос. науч.-практ. конф. Волгоград, 2010. 390 с.
- Щербатых Ю. В. Саморегуляция вегетативного гомеостаза при эмоциональном стрессе // Физиология человека. 2000. Т. 26, № 5. С. 151–152.
- Юматов Е. А., Кузьменко В. А., Бадиков В. И. и др. Экзаменационный эмоциональный стресс у студентов // Физиология человека. 2001. Т. 27, № 2. С. 104–111.
- Реан А. А., Кудашев А. Р., Баранов А. А. Психология адаптации личности. Анализ. Теория. Практика. СПб., 2006 479 с.
- 8. *Лыкова Е. Ю.* Психофизиологическая реактивность на экзаменационный стресс у студенток с разной степенью самооценки знаний // Вопросы биологии, экологии, химии и методики обучения. Саратов, 2006. Вып. 9. С. 115–120.
- 9. *Щербатых Ю. В.* Влияние показателей высшей нервной деятельности студентов на характер протекания экзаменационного стресса // Журн. ВНД им. И.Павлова. 2000. № 6. С. 959–963.
- 10. Гаголина С. В. Оценка и прогнозирование психофизиологического напряжения организма студентов в процессе обучения: дис. ... канд. биол. наук. Караганда, 2004. 150 с.
- 11. Яковлев Б. П., Литовченко О. Г. Психическая нагрузка и ее влияние на активность учащихся в условиях напряженной учебной деятельности // Фундаментальные исследования. 2004. № 3. С. 94–95.
- 12. Баевский Р. М., Берсенева А. П. Введение в донозологическую диагностику. М., 2008. 220 с.
- Казин Э. М., Блинова Н. Г., Игишева Л. Н. и др. Практикум по психофизиологической диагностике. М., 2000. 128 с.
- 14. Дубровский В. И. Валеология. Здоровый образ жизни. М., 1999. 560 с.
- 15. Вейн А. М. Заболевания вегетативной нервной системы. М., 1991. 622 с.

74 Научный отдел

- Баевский Р. М., Берсенева А. П. Оценка адаптивных возможностей и риск развития заболеваний. М., 1997. 236 с.
- 17. *Щербатых Ю. В.* Вегетативные проявления экзаменационного стресса : автореф. дис. . . . д-ра биол. наук. СПб., 2001. 32 с.
- 18. Кузьменко В. А. Сопоставление вегетативных показателей студентов при экзаменационном стрессе и при
- физической нагрузке // Физиология человека. 2002. Т. 28, № 5. С. 131–133.
- Агаджанян Н. А., Тель Л. З., Циркин В. И., Чеснокова С. А. Физиология человека. М.; Н. Новгород, 2003.
 528 с.
- 20. Солодков А. С. Физиология человека. Общая. Спортивная. Возрастная. М., 2008. 620 с.

УДК 631.46:579.26

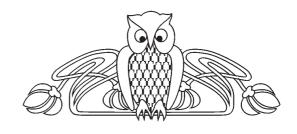
ВЛИЯНИЕ ПЕСТИЦИДОВ НА МИКРООРГАНИЗМЫ ПОЧВ САРАТОВСКОЙ ОБЛАСТИ

О. Ю. Ксенофонтова, Е. В. Иванова

Саратовский государственный университет E.mail: ksenofontova64@mail.ru

В работе изучено влияние различных доз действующих веществ пестицидов картоцида, нитролона, хлортиазида, 2,4-Д-аминной соли, хлорсульфурона и лямбда-цигалотрина на почвенные микроорганизмы. Проведена оценка действия пестицидов на рост микроорганизмов в чистой культуре. Выделены и идентифицированы штаммы бактерий, способные использовать пестициды в качестве источника углерода. Изучены их ростовые и деструктивные характеристики в отношении пестицидов различной химической природы.

Ключевые слова: пестициды, микроорганизмы, биодеструкция, картоцид, нитролон, хлортиазид, 2,4-Д-аминная соль, хлорсульфурон, лямбда-цигалотрин.


Dependence on the Namber of Soil Microbial from Concentrations of Pesticides

O. Yu. Ksenofontova, E. V. Ivanova

The influence of different experimental doses of the active ingredients of pesticides kartocid, nitrolon, chlortiazid, 2,4-D-amine salt, chlorsulfuron and lambda-cyhalotrin on soil microorganisms. An assessment of pesticides on the growth of microorganisms in pure culture. Isolated and identified strains of bacteria capable of using pesticides as a carbon source. Studied thei growth and destructive characteristics of pesticides of different chemical structure.

Key words: pesticides, kartocid, nitrolon, chlortiazid, 2,4-D-amine salt, chlorsulfuron, lambda-cyhalotrin, soil microorganisms, destruction.

Применение химикатов с целью повышения продуктивности в растениеводстве и животноводстве обусловливает рост ассортимента и объемов их использования. Признавая несомненный положительный эффект от применения пестицидов в различных сферах хозяйственной деятельности человека, постепенно накапливаются данные о негативных последствиях использования таких препаратов [1]. Независимо от формы и способа применения пестициды по-

падают в почву, накапливаются в ней и влияют на микробные сообщества. Необходимость исследования взаимодействия пестицидов с почвенной микрофлорой обусловлена важнейшей ролью микроорганизмов в создании почвенного плодородия и детоксикации почвы от ксенобиотиков [2]. Поэтому разработки микробиологического способа очистки почвы от пестицидов имеют важное значение [3]. В связи с этим ведутся поиски и конструирование штаммов микробов – деструкторов пестицидов и интродукция их в природные экосистемы [4–6].

Представляется актуальным также вопрос замены токсичных пестицидов на препараты нового типа, менее загрязняющие среду и обладающие способностью разрушаться под воздействием микроорганизмов.

В связи с этим целью работы явилась оценка действия влияния активных веществ пестицидов: хлорсульфурона, лямбда-цигалотрина, картоцида, нитролона, хлортиазида и 2,4—Д-аминной соли на численность основных групп почвенных микроорганизмов.

Для достижения поставленной цели предстояло решить комплекс следующих задач.

- 1. Изучить действие различных доз исследуемых веществ на численность актиномицетов, гетеротрофных бактерий и плесневых грибов.
- 2. Выявить чувствительность чистых культур почвенных микроорганизмов к различным концентрациям исследуемых препаратов.
- 3. Выявить пестициды, способные разрушаться под действием микроорганизмов, и выделить культуры, разрушающие их.
- 4. Изучить деструктивную активность выделенных культур микроорганизмов.