

- Баевский Р. М., Берсенева А. П. Оценка адаптивных возможностей и риск развития заболеваний. М., 1997. 236 с.
- 17. *Щербатых Ю. В.* Вегетативные проявления экзаменационного стресса : автореф. дис. . . . д-ра биол. наук. СПб., 2001. 32 с.
- 18. Кузьменко В. А. Сопоставление вегетативных показателей студентов при экзаменационном стрессе и при
- физической нагрузке // Физиология человека. 2002. Т. 28, № 5. С. 131–133.
- Агаджанян Н. А., Тель Л. З., Циркин В. И., Чеснокова С. А. Физиология человека. М.; Н. Новгород, 2003.
 528 с.
- 20. Солодков А. С. Физиология человека. Общая. Спортивная. Возрастная. М., 2008. 620 с.

УДК 631.46:579.26

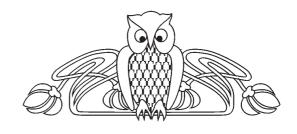
ВЛИЯНИЕ ПЕСТИЦИДОВ НА МИКРООРГАНИЗМЫ ПОЧВ САРАТОВСКОЙ ОБЛАСТИ

О. Ю. Ксенофонтова, Е. В. Иванова

Саратовский государственный университет E.mail: ksenofontova64@mail.ru

В работе изучено влияние различных доз действующих веществ пестицидов картоцида, нитролона, хлортиазида, 2,4-Д-аминной соли, хлорсульфурона и лямбда-цигалотрина на почвенные микроорганизмы. Проведена оценка действия пестицидов на рост микроорганизмов в чистой культуре. Выделены и идентифицированы штаммы бактерий, способные использовать пестициды в качестве источника углерода. Изучены их ростовые и деструктивные характеристики в отношении пестицидов различной химической природы.

Ключевые слова: пестициды, микроорганизмы, биодеструкция, картоцид, нитролон, хлортиазид, 2,4-Д-аминная соль, хлорсульфурон, лямбда-цигалотрин.


Dependence on the Namber of Soil Microbial from Concentrations of Pesticides

O. Yu. Ksenofontova, E. V. Ivanova

The influence of different experimental doses of the active ingredients of pesticides kartocid, nitrolon, chlortiazid, 2,4-D-amine salt, chlorsulfuron and lambda-cyhalotrin on soil microorganisms. An assessment of pesticides on the growth of microorganisms in pure culture. Isolated and identified strains of bacteria capable of using pesticides as a carbon source. Studied thei growth and destructive characteristics of pesticides of different chemical structure.

Key words: pesticides, kartocid, nitrolon, chlortiazid, 2,4-D-amine salt, chlorsulfuron, lambda-cyhalotrin, soil microorganisms, destruction.

Применение химикатов с целью повышения продуктивности в растениеводстве и животноводстве обусловливает рост ассортимента и объемов их использования. Признавая несомненный положительный эффект от применения пестицидов в различных сферах хозяйственной деятельности человека, постепенно накапливаются данные о негативных последствиях использования таких препаратов [1]. Независимо от формы и способа применения пестициды по-

падают в почву, накапливаются в ней и влияют на микробные сообщества. Необходимость исследования взаимодействия пестицидов с почвенной микрофлорой обусловлена важнейшей ролью микроорганизмов в создании почвенного плодородия и детоксикации почвы от ксенобиотиков [2]. Поэтому разработки микробиологического способа очистки почвы от пестицидов имеют важное значение [3]. В связи с этим ведутся поиски и конструирование штаммов микробов – деструкторов пестицидов и интродукция их в природные экосистемы [4–6].

Представляется актуальным также вопрос замены токсичных пестицидов на препараты нового типа, менее загрязняющие среду и обладающие способностью разрушаться под воздействием микроорганизмов.

В связи с этим целью работы явилась оценка действия влияния активных веществ пестицидов: хлорсульфурона, лямбда-цигалотрина, картоцида, нитролона, хлортиазида и 2,4—Д-аминной соли на численность основных групп почвенных микроорганизмов.

Для достижения поставленной цели предстояло решить комплекс следующих задач.

- 1. Изучить действие различных доз исследуемых веществ на численность актиномицетов, гетеротрофных бактерий и плесневых грибов.
- 2. Выявить чувствительность чистых культур почвенных микроорганизмов к различным концентрациям исследуемых препаратов.
- 3. Выявить пестициды, способные разрушаться под действием микроорганизмов, и выделить культуры, разрушающие их.
- 4. Изучить деструктивную активность выделенных культур микроорганизмов.

Материалы и методы

Материалами для экспериментов служили:

- 1. Почва, взятая с экспериментальных участков полей НИИСХ «Юго-Восток», расположенных на правом берегу р. Волги. Почва представляет собой легкоглинистый южный чернозем, содержащий до 2,55% гумуса и имеющий рН от 6,8 до 7,2 [2].
- 2. Препараты, полученные из НИИ химических средств защиты растений г. Москва:
- 2,4-Д-аминная соль $C_{25}H_{42}O_2NC_{12}$ хлорпроизводное феноксиуксусной кислоты;
- картоцид $C_{18}H_{35}C_{12}CuN_3O_4$ хлорсодержащий гетероциклический углероводород, экспериментальный фунгицид;
- хлортиазид $C_{15}H_{14}Cl_3N_3OS$ хлорпроизводное тиосемикарбацида, экспериментальный фунгицид;
- нитролон экспериментальный пестицид неизвестного спектра действия.
- 3. Пестициды, широко используемые на территории Саратовской области:
- хлорсульфурон («Глин», «Телар» и др.) C12H12ClN5O4S производное мочевины;
- лямбда-цигалотрин («Молния», «Гладиатор», «Коммодор», «Самурай», «Каратэ» и др.) C23H19ClF3NO3 пиретроидный инсектицид.
- 4. Культуры микроорганизмов, выделенные из почвы с пестицидами:
- 38 штаммов актиномицетов, 175 штаммов гетеротрофных бактерий,
- 20 штаммов плесневых грибов, 30 штаммов фитопатогенных бактерий.

В работе использовали следующую схему методических приемов:

- отбор проб почвы, подготовка почвы и пестицида к исследованию;
- внесение пестицида в почву;
- испытание трех доз для каждого пестицида: производственная концентрация (ПК) и превышающие её в 10 (10 ПК) и 100 раз (100 ПК);
- отбор проб почв сразу после внесения пестицида в почву, на 5-е и 30-е сут;
- определение численности микроорганизмов проводили в почве с пестицидом (опыт) и без пестицида (контроль). Результаты выражали в процентах по отношению к контролю, принятому за 100 %.
- выделение штаммов микроорганизмов из почвы, длительно (30 дн.) содержащей пестицид в чистые культуры;
- определение чувствительности чистых культур к пестициду на твердых питательных средах;
- отбор штаммов, проявивших стимуляцию на среде с пестицидом;

- отбор штаммов, использующих препараты как единственный источник углерода;
- изучение деструктивной активности микробов;
- идентификация микроорганизмов деструкторов.

Определение чувствительности культур к препарату проводили методом отпечатков на твердой питательной среде. Гетеротрофные бактерии выращивали на мясо-пептонном агаре (МПА), актиномицеты — крахмало-аммиачном агаре (КАА), грибы — на среде Сабуро, фитопатогенные бактерии — в картофельно-декстрозной среде. После стерилизации в питательные среды вносили пестицид с таким расчетом, чтобы конечная концентрация препарата соответствовала производственной. Сухие препараты предварительно растворяли в ацетоне, спирте или другом растворителе и добавляли такой же объем растворителя без пестицида во вторые (контрольные) колбы.

Для посева получали взвеси из суточных культур гетеротрофных бактерий, трехсуточных культур актиномицетов и грибов, приготовленные в соответствии с оптическим стандартом мутности на 5 единиц (500 млн м.к. в 1мл).

Посев взвесей исследуемых культур проводили методом отпечатков или уколом на поверхность питательной среды, содержащей (опыт) и не содержащей (контроль) пестицид. Высев каждой культуры в опыте и контроле осуществляли трехкратно для получения достоверных результатов. Чашки с посевами культивировали в термостате при температуре 28°C в течение 2–5 сут. После инкубации учитывали диаметр выросших колоний и сравнивали их с ростом аналогичных культур в контроле и опыте. Торможение и стимулирование роста штаммов рассчитывали по формуле Эббота [7]:

 $T = \frac{\mathcal{A}_{K} - \mathcal{A}_{O}}{\mathcal{A}_{K}} \cdot 100 \%,$

где T — торможение роста; \mathcal{A}_{κ} — диаметр колоний в контроле; $\mathcal{A}_{\rm o}$ — диаметр колоний в опыте.

В случае стимулирования роста микробов показатель T (торможения) имеет отрицательное значение, а при подавлении их роста — положительное. Культуры, которые имели высокий отрицательный коэффициент торможения, отбирали для изучения биодеградации данных пестицидов.

Отбор штаммов, использующих пестицид как единственный источник углерода, проводили на минеральной синтетической среде М9 (г/л NaCl – 0,5; Na₂HPO₄ · 2H₂O – 6,0; KH₂PO₄ × ×2H₂O – 3,0; NH₄Cl – 1, pH = 7,0–7,2).

Для обнаружения у бактерий дегидрогеназной активности, свидетельствующей о деградации препаратов, использовали соль 2,3,5-трифенилтетразолий хлорид (ТТХ). Окрашивание колоний и

76 Научный отдел

среды вокруг них в красный цвет указывало на образование восстановленного трифенилформазана (ТФФ). По этому признаку отбирали штаммы бактерий, использующие пестицид как единственный источник углерода. Изучение деструкции пестицидов проводили путем внесения штаммов деструкторов в жидкую среду М9, содержащую 200–700 мкг/мл пестицида.

Динамику роста микроорганизмов изучали после центрифугирования путем разбавления осадка физиологическим раствором и измерением оптической плотности на КФК-2 при 440–600 нм. Количество клеток определяли по предварительно построенной калибровочной кривой, выражающей соотношение их количества с оптической плотностью культуральной жидкости. Аэрация сред с культурами бактерий проводилась на круговой качалке Шуттера (160 об/мин).

Изменения в спектральных характеристиках пестицидов отмечали в супернатанте после центрифугирования среды с микроорганизмами. Контролем служила среда из пестицида, не содержащая культуры деструкторов. Для записи спектров использовали спектрофотометры hp 8452 A DIODE ARRAY (США), Specord M-40 (Германия).

Идентификация микроорганизмов проводилась на основании изучения совокупности морфологических, культуральных и биохимических признаков с использованием определителя Берджи.

Результаты и их обсуждение

Экспериментально установлено, что внесение пестицидов в почву вызывает изменение численности микробов, которое зависит от дозы препаратов. Выявлено избирательное влияние пестицидов на основные группы почвенных микроорганизмов (табл. 1).

Xлорсульфурон (Глин, Телар) — $C_{12}H_{12}CIN_5O_4S$. Установлено, что препарат стимулирует размножение микроорганизмов в почве, причем численность гетеротрофных бактерий увеличилась на 42%, актиномицетов и грибов — до 200%. Однако нарастание количественного содержания микроорганизмов наблюдалось при высокой (100 ПК) концентрации пестицида.

Воздействие различных доз пестицидов на микроорганизмы почвы

Таблица 1

	Доза, ПК (мг/кг)	Физиологические группы микроорганизмов					
Пестициды		Актиномицеты, КОЕ · 10^3 , $M \pm m$		Бактерии, КОЕ · 10^5 , $M \pm m$		Грибы, КОЕ · 10^2 , $M \pm m$	
		5 сут	30 сут	5 сут	30 сут	5 сут	30 сут
2,4-Д-аминная соль	ПК 1 10 ПК 100 ПК Контроль	$78 \pm 3,1$ $77 \pm 2,3$ $71 \pm 1,5$ $79 \pm 5,1$	$76 \pm 3,3$ $72 \pm 2,7*$ $71 \pm 2,5*$ $80 \pm 2,1$	79 ± 2.8 $87 \pm 1.5*$ $112 \pm 2.4*$ 80 ± 3.7	$102 \pm 2,4* 105 \pm 3,3* 103 \pm 5,6* 75 \pm 3,1$	$46 \pm 2,8 51 \pm 3,5 60 \pm 2,4* 47 \pm 2,3$	$40 \pm 3,2*$ $52 \pm 3,7$ $44 \pm 1,5*$ $50 \pm 3,8$
Хлор-сульфурон	ПК 7 10 ПК 100 ПК Контроль	79 ± 3.5 80 ± 2.2 $74 \pm 2.1*$ 81 ± 3.7	$80 \pm 1.8*$ 85 ± 2.6 $79 \pm 2.4*$ 88 ± 3.6	$51 \pm 2.8*$ 67 ± 2.5 $93 \pm 3.3*$ 65 ± 2.3	$102 \pm 2.8* 100 \pm 2.3* 105 \pm 4.7* 68 \pm 3.3$	$106 \pm 5,2*$ $128 \pm 1,5*$ $150 \pm 3,2*$ $117 \pm 3,7$	$98 \pm 2.6*$ 115 ± 3.7 $97 \pm 5.4*$ 110 ± 3.3
Лямбда-цигалотрин	ПК 1,5 10 ПК 100 ПК Контроль	$84 \pm 3,6 103 \pm 3,3 122 \pm 1,2* 88 \pm 2,7$	$87 \pm 5,2*$ $75 \pm 3,8$ $147 \pm 1,9*$ $75 \pm 3,3$	$76 \pm 1,6*$ $70 \pm 1,5$ $77 \pm 2,6*$ $69 \pm 3,1$	$65 \pm 1,8*$ $52 \pm 3,2$ $50 \pm 1,6$ $50 \pm 1,8$	$56 \pm 3.8*$ $45 \pm 2.5*$ $13 \pm 1.6*$ 62 ± 2.9	$53 \pm 2,2*$ $31 \pm 3,5*$ $2 \pm 1,7*$ $75 \pm 3,3$
Картоцид	ПК 1 10 ПК 100 ПК Контроль	81 ± 2.3 75 ± 3.7 $66 \pm 1.1*$ 78 ± 2.1	78 ± 3.7 84 ± 4.9 76 ± 2.3 78 ± 2.2	$62 \pm 2.8*$ $89 \pm 3.4*$ $104 \pm 2.2*$ 42 ± 3.8	$48 \pm 2,4 43 \pm 1,8 51 \pm 3,3* 42 \pm 4,2$	$69 \pm 2.5*$ $52 \pm 3.8*$ $35 \pm 2.3*$ 115 ± 1.8	101 ± 3.9 $82 \pm 2.6*$ $31 \pm 1.4*$ 100 ± 3.3
Нитролон	ПК 1 10 ПК 100 ПК Контроль	$71 \pm 2.8*$ $75 \pm 3.2*$ $81 \pm 4.5*$ $21, \pm 2.7$	$65 \pm 3.8*$ $54 \pm 2.4*$ $50 \pm 2.6*$ 37 ± 4.2	72 ± 3.7 $30 \pm 1.3*$ $40 \pm 2.6*$ 65 ± 2.2	$50 \pm 2.6*$ $49 \pm 3.8*$ $46 \pm 2.3*$ 21 ± 3.2	$38 \pm 3,3$ $30 \pm 2,2$ $25 \pm 2,1*$ $40 \pm 3,7$	$16 \pm 2.7*$ 15 ± 3.4 13 ± 4.3 10 ± 2.2
Хлортиазид	ПК 1 10 ПК 100 ПК Контроль	$120 \pm 1,2 * 70 \pm 5,4* 60 \pm 2,3* 130 \pm 3,2$	$120 \pm 2.8 * 120 \pm 2.2 * 110 \pm 1.6 * 130 \pm 5.5$	$39 \pm 2,8$ $57 \pm 3,3*$ $79 \pm 3,2*$ $35 \pm 3,7$	$30 \pm 1.8*$ $43 \pm 1.6*$ $44 \pm 2.4*$ 18 ± 2.7	$45 \pm 2.8*$ $24 \pm 1.5*$ $6 \pm 1.3*$ 58 ± 3.8	$14 \pm 1,3*$ $7 \pm 1,9*$ $1 \pm 1,2*$ $60 \pm 2,6$

Примечание. ПК – производственная концентрация, * p < 0.05 достоверность различий при сравнении опытных образцов почв с контролем.

Биология 77

Воздействие пестицида на чистые культуры бактерий родов *Bacillus, Pseudomonas, Sporosarcina, Staphylococcus* не отразилось на их росте, что свидетельствует об устойчивости микробов к гербициду. Лишь доза 15 мг/л проявила ингибирующий эффект на бактерии родов *Pseudomonas* и *Xanthomonas*. Вместе с тем достаточно чувствительными к пестициду (МБК = 1,9-3,7 мг/л) оказались бактерии родов *Agrobacterium* и *Clavibacter*.

Лямбда-цигалотрин («Каратэ», «Молния» и (2p.) – $C_{23}H_{19}ClF_3NO_3$. Выявлен стимулирующий эффект размножения гетеротрофных бактерий пестицидом. В результате численность этих микробов увеличилась на 200 - 270%, но на 30-е сут отмечено снижение количественных показателей их в пробах, хотя уровень содержания бактерий не опускался ниже исходного. Увеличение численности актиномицетов в 2,5 раза наблюдалось при внесении 1,5 и 15 мг/кг инсектицида в почву. Максимальная же его концентрация (150 мг/кг) слегка подавляла размножение актиномицетов. Явно ингибирующе действовал препарат на плесневые грибы. При этом отмечено, что при большей концентрации внесенного пестицида грибов в почве обнаруживалось значительно меньше, чем в контроле.

Уже на 5-е сут в пробах, содержащих 10 и 100 производственных доз, произошло снижение числа грибов до 20% и 5% соответственно, численность которых не восстанавливалась и на 30-й день.

Полученные данные свидетельствуют о том, что лямбда-цигалотрин обладал фунгицидным действием, особенно при повышенных дозах препарата. При определении чувствительности культур к пестициду выявлено 25 штаммов, которые интенсивно росли на среде с пестицидом, при этом обнаруживался коэффициент торможения от -0 до -500%.

Стимуляцию на среде с препаратом проявили в основном бактерии родов *Bacillus* и *Pseudomonas*. Из них отобраны 11 штаммов, у которых изучена возможность использования препарата как питательного субстрата.

В результате выявлено семь штаммов, которые усваивали пестицид как единственный источник углерода. Доказана деструкция лямбдацигалотрина культурами бактерий родов *Bacillus* и *Pseudomonas* в среде М9. Наилучший результат был отмечен у штаммов бактерий рода *Pseudomonas*, которые за 6 сут снижали концентрацию пестицида более чем в 20 раз (рис. 1).

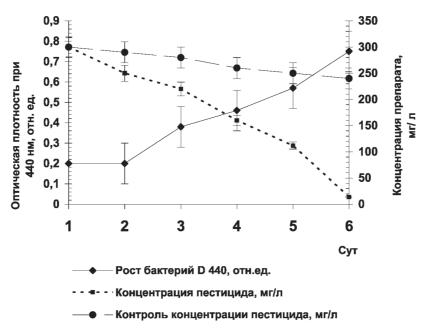


Рис. 1. Деструкция лямбда-цигалотрина бактериями рода Pseudomonas

 Φ унгицид картоцид $C_{18}H_{35}Cl_2CuN_3O_4$. Экспериментами выявлены особенности, позволяющие утверждать, что пестицид стимулирует размножение гетеротрофных бактерий, но ингибирует деятельность актиномицетов и плесневых грибов. Чистые культуры кокковых форм бактерий и дрожжеподобных грибов проявили ингибирование, а грамотрицательные

палочковидные бактерии — стимулирование в росте на среде с препаратом. Фитопатогенные бактерии рода Erwinia оказались чувствительными к картоциду и имели KT = 4.0-87.2% (табл. 2). Доказано разрушение картоцида почвенными микроорганизмами рода Bacillus, которые трансформировали пестицид в течение 36 ч (рис. 2, 3).

78 Научный отдел

Таблица 2
Чувствительность штаммов бактерий рода Erwinia к картоциду

Вид и штамм бактерий	Диаметр ко	Коэффициент	
вид и штамм оактерии	Контроль	Опыт	торможения, %
Erwinia amylovora 75	6.4 ± 0.52	5.3 ± 0.42	17.0
E. carotovora var. citrullis MII	11.7 ± 0.25	1.5 ± 0.52	87.2
E. carotovora var. citrullis 215	9.6 ± 0.23	1.9 ± 0.64	80.2
E. carotovora var. citrullis 438	6.4 ± 0.32	4.5 ± 0.53	29.6
E. carotovora var. citrullis 9011	5.4 ± 0.42	2.4 ± 0.41	55.5
E. carotovora var. citrullis 603	7.3 ± 0.55	7.0 ± 0.43	4.0
E. carotovora var. citrullis 21	0.7 ± 0.05	0.2 ± 0.04	71.4
E. carotovora var. citrullis 9005	2.4 ± 0.50	1.8 ± 0.45	25.0
E. herbicola 8560	4.0 ± 0.51	3.0 ± 0.72	25.0
E. herbicola 8593	7.5 ± 0.52	5.0 ± 0.73	33.3

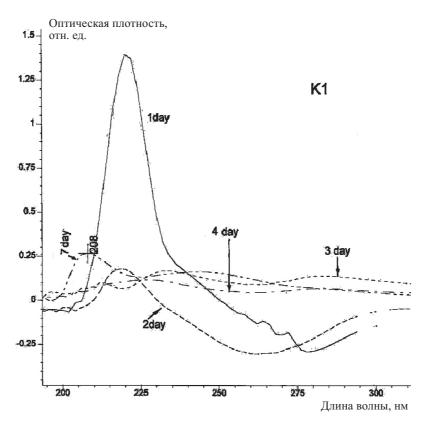


Рис. 2. Спектральный анализ деструкции картоцида Bacillus mycoides

Нитролон в опытах снижал численность гетеротрофных бактерий и плесневых грибов в первые 5 сут их контакта. Затем происходило нарастание количественных показателей бактерий в 2,5 раза, а грибов — в 1,5 раза. При изучении взаимодействия чистых культур бактерий с нитролоном выявлено 19 штаммов, использующих пестицид, но особенно интенсивно стимулировался рост бактерий рода Bacillus. Деструкцию препарата осуществляли виды бактерий родов Bacillus и Pseudomonas (рис. 4).

 $\underline{\Phi}$ унгицид хлортиазид — $C_{15}H_{14}Cl_3N_3OS$. Эксперименты подтвердили фунгицидное действие

препарата, который снижал также численность актиномицетов, но стимулировал размножение гетеротрофных бактерий. Использование пестицида в качестве источника питания и энергии оказалось доступным для 12 штаммов бактерий родов *Bacillus, Staphylococcus, Pseudomonas* и 8 штаммов актиномицетов, КТ которых колебался у бактерий от –25 до –233 %, а актиномицетов от –20 до –400 %.

Испытанные виды фитопатогенных бактерий обладали разной степенью чувствительности (КТ = 8,7-46,0%). Важно, что препарат ингибировал рост бактерии *Erwinia carotovora*, способной вызывать некрозы и мокрые гнили у растений.

Биология 79

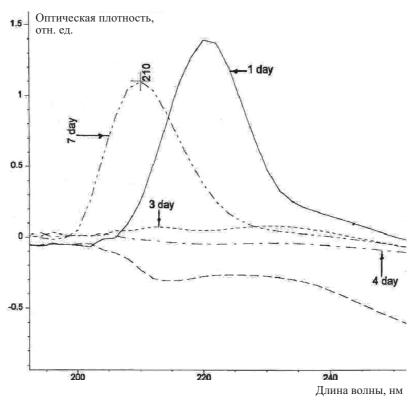


Рис. 3. Спектральный анализ деструкции картоцида Bacillus megaterium

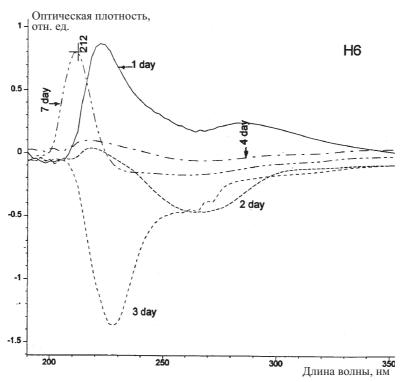


Рис. 4. Спектральный анализ деструкции нитролона штаммом Pseudomonas fluorescens

В связи с тем, что хлортиазид стимулировал рост гетеротрофных бактерий, поиск деструкторов проводили в этой группе микроорганизмов. Из почвы, длительно (90 дней) контактировавшей

с препаратом, выделен и изучен штамм бактерий рода *Bacillus*, использующий пестицид в качестве источника питания и энергии. Выявлено разрушение ароматической структуры пестицида (рис. 5).

80 Научный отдел

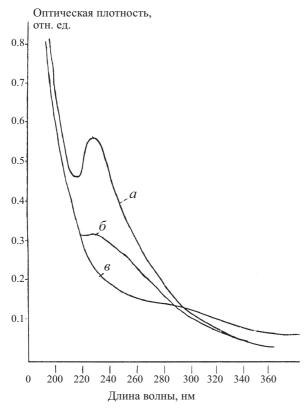


Рис. 5. Спектральный анализ деструкции хлортиазида: a – перед инкубацией; b – через 6 сут инкубации; b – через 8 сут инкубации

Экспериментально установлено, что в среде, содержащей 200 мг/л пестицида, $B.\ subtilis$ трансформировал 50% препарата за 72 ч.

2,4-Д-аминная соль — $C_{25}H_{42}O_2NCl_2$. Препарат стимулировал в почве размножение лишь гетеротрофных бактерий, численность которых увеличилась в 1.5 раза. Актиномицеты и грибы подавлялись при длительном контакте с препаратом. Ингибирующее действие он оказывал также на чистые культуры бацилл и фитопатогенные бактерии родов Erwinia и Pseudomonas. Между тем при проведении экспериментов удалось получить 2 штамма, способных расти на среде с пестицидом. Установлено снижение концентрации гербицида на 300 мг/л в течение

6 сут при непрерывном увеличении содержания клеток бацилл.

Проведенные эксперименты позволяют утверждать, что в результате длительного их контакта (30 дн.) имело место изменение состава микробной ассоциации и нарастание содержания бактерий родов *Bacillus* и *Pseudomonas*. Представители этих родов в основном и участвуют в детоксикации почвы от различных ксенобиотиков. Внесение оптимальных доз бактерий-деструкторов, установленных экспериментальным путем, может оказать существенное влияние на уровень концентрации пестицидов в почве.

Список литературы

- 1. Ермаков Н. М., Корнеев Г. А., Яковлев С. А., Колнобрицкая О. А., Попов Н. В., Толоконникова С. И. Неспецифическая профилактика зооантропонозных инфекций (дезинсекция), пути её развития // Энтомологические и паразитологические исследования в Поволжье. Саратов, 2001. Вып. 1. С. 66–69.
- 2. *Медведев И. Ф.* Агроэкологические основы повышения плодородия склоновых черноземных почв Поволжья: дис. ... д-ра с.-х. наук. Саратов, 2001. 384 с.
- 3. Скоробогатова В. И., Щербакова Л. Ф., Ермакова И. Т. Реабилитация почв, загрязненных продуктами разложения фосфорорганических токсичных химикатов // Биология наука XXI века: сб. тез. 14 Междунар. Пущинской шк. Пущино, 2010. Т. 2. С. 261.
- Коршунова И. О., Егорова Д. О. Галотолерантные бактерии деструкторы Бифенила // Биология наука XXI века: сб. тез. 14 Междунар. Пущинской шк. Пущино, 2010. Т. 2. С. 234–235.
- 5. *Магомаева Т. П., Сопрунова О. Б.* Почвенные бактерии деструкторы поверхностно-активных веществ // Биология наука XXI века: сб. тез. 14 Междунар. Пущинской шк. Пущино, 2010. Т. 2. С. 243.
- 6. Пастухова Е. С., Шестакова Е. А., Ястребова О. В. Бактерии деструкторы нафталина и орто-фталата из техногенно-минеральных образований (ТМО) соледобывающего предприятия // Биология наука XXI века: сб. тез. 14 Междунар. Пущинской шк. Пущино, 2010. Т. 2. С. 250–251.
- Андреева Е. И., Картомышева В. С. Методические рекомендации по испытанию химических веществ на фунгицидную активность. Черкассы, 1990. 67 с.

Вилопогия 81