Cite this article as:

Kulagin A. Y., Ishbirdin A. R., Tagirova O. V. Adaptive Variability of Willow White (Salix alba L.) in the Conditions of Technogenic Pollution of the Environment (South Ural Region). Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2020, vol. 20, iss. 1, pp. 90-101. DOI: https://doi.org/10.18500/1816-9775-2020-20-1-90-101


This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Heading: 
UDC: 
57.042
Language: 
Russian

Adaptive Variability of Willow White (Salix alba L.) in the Conditions of Technogenic Pollution of the Environment (South Ural Region)

Abstract

The peculiarities of adaptation and variability of Salix alba L. at the morphological level were studied in extreme natural and technogenic conditions of the Southern Urals. It was found that Salix alba is characterized by a wide ecological valence, and in terms of morphological variability – is stable morphological structure. The influence of geographical, climatic and anthropogenic factors on the level of morphological integration of Salix alba was revealed. Thus, under optimal growth conditions, the level of morphological integration can reach maximum values, while extreme conditions of existence contribute to the reduction of the morphological integrity of the species. The heterogeneous influence of various stress factors (pollution, soil moisture, continental climate) on the structure of morphological variability was revealed. Depending on the stress factor and the strength of its impact, the type of ontogenetic tactics in the development of signs also changes. Under moderate stress, the level of fluctuating asymmetry increases, and under extreme stress, the level of fluctuating asymmetry decreases, which may be a manifestation of the adaptive strategy of Salix alba under extreme stress. The analysis of adaptive variability of Salix alba morphological traits testifies to the manifestation of different types of ontogenetic tactics: convergent tactics is manifested in traits in the samples, where the main stressful factor is the degree of moisture; divergent/ convergent tactics is manifested in the features in the samples, where the main stress factor is the level of pollution. For Salix alba under stress the protective stress ontogenetic strategy is marked. Ontogenetic strategies of Salix alba characterize this species as a competitor.

References

1. Lloyd S. D., Fletcher T. D., Wong T. H. F., Wootton R. M. Assessment of Pollutant Removal Performance in a Biofi ltration System: Preliminary Results. 2nd South Pacifi c Stormwater Conf.; Rain the Forgotten Resource, 27–29 June 2001, Auckland, New Zealand, 2001, pp. 20–30.
2. Kulagin A. A., Shagieva Yu. A. Drevesnye rasteniya i biologycheskaya konservatsiya promushlenikh zagryaznitelei [Woody plants and biological conservation industrial pollutants]. Moscow, Nauka Publ., 2005. 190 p.
3. Opekunova M. G., Zakharyan L. S. Heavy metals in the soil-plant system as an indicator of environmental pollution in St. Petersburg. Protection of Atmospheric Air. Atmosphere, 2012, no. 1, pp. 40–46 (in Russian).
4. Tanee F. B. G., Albert E. Air pollution tolerance indices of plants growing around Umuebulu Gas Flare Station in Rivers State, Nigeria. African Journal of Environmental Science and Technology, 2013, vol. 7, no. 1, January, pp. 1–8.
5. Jusfi n S. Yu., Leont’ev L. I., Chernousov P. I. Promyshlennost' i okruzhayuschaya sreda [The Industry and the environment]. Moscow, IKTs Publ., 2002. 469 p. (in Russian).
6. Ramdan A. A. Heavy metal pollution and biomonitoring plants in Lake Manzala, Egypt, Pak. J. Biol. Sci., 2003, vol. 6, no. 13, pp. 1108–1117.
7. Chukaeva N. V. Some aspects of the use of bioindication techniques. Advances in Modern Natural Science, 2011, no. 8, pp. 78–79 (in Russian).
8. Tarabrin V. P., Ignatenko A. A. O nekotorykh adaptivnykh izmeneniyakh v aminokislotnom obmene rasteniy v period posledstviy fenola [On some adaptive changes in amino acid metabolism of plants during the aftereffect of phenol]. In: Dendroecologiya, tehnogenez, voprosy ohrany prirody [Dendroecology, technogenesis, issues of nature protection]. Ufa, BFAN USSR, 1987, pp. 70–77 (in Russian).
9. Kulagin A. Yu. Ivy: tekhnogenez i problemy optimizatsii narushennykh landshaftov [Ivy: technogenesis and optimization problems of disturbed landscapes]. Ufa, Gilem Publ., 1998. 193 p. (in Russian).
10. Kulagin A. Yu., Mokin A. A. The Infl uence of stress on morphological integration in the development of Salix alba (L.) traits. Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2012, vol. 12, iss. 2, pp. 86–90 (in Russian).
11. Olsen E., Miller R. Morphological integration. Chicago, 1958. 318 p.
12. Zlobin Y. A. Printsipy i metody izucheniya tsenoticheskikh populyatsii rastenii [Principles and methods of studying coenotic populations of plants]. Kazan, Kazan University Press, 1989. 147 p. (in Russian).
13. Zaitsev G. I. Matematicheskiy analiz biologicheskikh dannykh [Mathematical analysis of biological data]. Moscow, Nauka Publ., 1991. 182 p. (in Russian).
14. Zakharov V. M. Ontogenesis and population (stability of development and population variability). Ecology, 2001, no. 3, pp. 177–191 (in Russian).
15. Ishbirdin A. R., Ishmuratova M. M. Assessment of the vitality of coenopopulations of Rhodiola iremelica Boriss. on the size spectrum. Scientifi c Notes of NTGSPA, N. Tagil, 2004, pp. 80–85 (in Russian).
16. Zelditch M., Swiderski D., Sheets D., Fink W. Geometric morphometrics for biologist : a primer. Oxford, Elsevier Acad. Press, 2004. 444 p.
17. Gelashvili D. B., Lobanova I. V., Erofeeva E. A. Infl uence of forest pathology of the hanging birch on the value of fl uctuating asymmetry of the leaf blade. Povolzhskiy Journal Ecology, 2007, no. 2, pp. 106–115 (in Russian).
18. Gasheva N. A. A mathematical representation of leaf shape in studies of the structure of biodiversity of salix. Bulletin of the Tver State University. Ser. Biology and Ecology, 2008, vol. 9, pp. 42–46 (in Russian).
19. Suslonov A.V., Svetlakova T. V., Boronnikova S. V. Morfologicheskaya izmenchivost Poa pratensis (L.) pri neftyanom zagryaznenii [Morphological variability of Poa pratensis (L.) in oil pollution]. Biologicheskie sistemy: ustoichivost, prinzipy i mehanizmy funkzionirovaniya: materialy III Vseros. nauch.-prakt. konf. [Biological systems: stability, principles and mechanisms of functioning: Proceedings of the III all-Russian scientifi c-practical conference]. Nizhny Tagil, 2010, pp. 229–231 (in Russian).
20. Graham J. H., Whitesell M. J., Fleming M. Fluctuating asymmetry of plant leaves: batch processing with LAMINA and continuous symmetry measures. Symmetry, 2015, no. 7, pp. 255–268. DOI:  https://doi.org/10.3390/sym7010255
21. Silva H. V., Alves-Silva E., Santos J. C. On the relationship between fl uctuating asymmetry, sunlight exposure, leaf damage and fl ower set in Miconia fallax (Melastomataceae). Tropical Ecology, 2016, vol. 57, no. 3, pp. 419–427.
22. Yuto C. M. M., Lumogdang L., Tabugo S. R. M. Fluctuating asymmetry as an Indicator of Ecological Stress in Rhinocypha colorata (Odonata: Chlorocyphidae) in Iligan City, Mindanao, Philippines. Entomology and Applied Science Letters, 2016, vol. 3, no. 1, pp. 13–20.
23. Castrence-Gonzales R. Asymmetry in the shape of the carapace of Scylla serrata (Forsskal, 1755) collected from Lingayen Gulf in Luzon. Philippines Proceedings of the International Academy of Ecology and Environmental Sciences, 2017, vol. 7, no. 3, pp. 55–66. 
24. Matondo D. A., Demayo C. G. Shapes of the Abdomen Between Sexes in Two Geographically Isolated Populations of Rana Ranina Using Landmark-Based Geometric Morphometrics and Multivariate Statistics. Entomology and Applied Science Letters, 2018, vol. 5, no. 3, pp. 41–47.
25. Shi P., Zheng, X., Ratkowsky D. A., Li Y., Wang P., Cheng L. A Simple Method for Measuring the Bilateral Symmetry of Leaves. Symmetry, 2018, vol. 10, no. 4, pp. 118. DOI: https://doi.org/10.3390/sym10040118
26. Van Dongen S. Human Bodily Asymmetry Relates to Behavioral Lateralization and May not Reliably Refl ect Developmental Instability. Symmetry, 2018, vol. 10, pp. 117. DOI: https://doi.org/10.3390/sym10040117
27. Morozov I. R. Zaschitnoe lesorazvedenie v ruslakh rek. [Protective afforestation in riverbeds]. Moscow, Les. prom-st' Publ., 1956. 96 p. (in Russian).
28. Afonin A. A. Izmenchivost' massovykh vidov iv YugoZapada Rossii: Teoreticheskaya i prikladnaya calikologiya [Variability of mass species of willows South-West of Russia: Theoretical and applied salesology]. Saarbrücken, LAP Lambert Academic Publishing, 2011. 182 p. (in Russian).
29. Ivanter E. V., Korosov A. V. Vvedenie v kolichestvennuyu biologiyu [Introduction in quantitative biology]. Petrozavodsk, Petrozavodsk State University, 2003. 304 p. (in Russian).
30. Rostova N. S. Korrelyatsii: struktura i izmenchivost [Correlations: structure and variability]. St. Petersburg, Izd-vo S.-Peterb. un-ta, 2002. 307 p. (in Russian).
31. Obzor sostoyaniya zagryazneniya prirodnoy sredy Orenburgskoy oblasty 2011 god (Review of the state of environmental pollution of the Orenburg region in 2011). Available at: http://gorodmednogorsk.ru/fliles/docs/ek2011.pdf (accessed 8 May 2019).
32. Kurmanova L. G., Kulagin A. Yu. Dynamics of the content and distribution of chemical elements in the waters of the rivers of the Bashkir TRANS-Urals. Bulletin of the Udmurt University. Biology. Earth Science, 2012, vol. 1, pp. 3–8 (in Russian).
33. Monitoring sostoyaniya sredy obytaniya i zdorovya naseleniya gorodskogo okruga gorod Ufa Respubliki Bashkortostan [Monitoring of the habitat and health of the population of the urban district of Ufa, Republic of Bashkortostan]. A. A. Kulagin, ed. Ufa, Izd-vo BSPU, 2014. 250 p. (in Russian).
34. Frank D., Klotz S. Biologisch-okologische Daten zur Flora der DDR. Halle (Saale), 1990. 167 p

Short text (in English): 
Full text (in Russian):