Cite this article as:
Zudina I. V., Vedyaeva A. P., Bulkina N. V., Ivanov P. V., Alzubaidi A. F. In Vivo and in Vitro Studies of the Effect of Chitosan on the Bone Defect Repair Process . Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2016, vol. 16, iss. 2, pp. 171-179. DOI: https://doi.org/10.18500/1816-9775-2016-16-2-171-179
In Vivo and in Vitro Studies of the Effect of Chitosan on the Bone Defect Repair Process
The objective of our in vivo and in vitro studies was to examine the molecular and cellular mechanisms of the anti-inflammatory and wound-healing effects of chitosan barriers when used for guided tissue regeneration (GTR) in a rabbit model. An ELISA test of the rabbit blood serum conducted during the treatment of alveolar bone defects has confirmed the ability of chitosan to reduce inflammation fast by suppressing the TNF- cytokine production. Our in vitro data show that chitosan stimulates fibroblasts and epithelial cells to synthesize the vascular endothelial growth factor (VEGF) and the granulocyte-macrophage colony-stimulating factor (GM-CSF) in the early post-surgery period. This could have important clinical implications because the success of flap surgery largely depends on the time of initiation of angiogenesis and neovascularization.
1. Грудянов А. И., Чупахин П. В. Методика направленной регенерации тканей. Подсадочные материалы. М. : ООО «Медицинское информационное агентство», 2007. 64 с.
2. Булкина Н. В., Ведяева А. П., Токмакова Е. В., Попкова О. В. Опыт применения аскорбата хитозана в комплексной терапии заболеваний пародонта // Саратовский научно-медицинский журн. 2013. Т. 9, № 3. С. 372‒375.
3. Зудина И. В., Булкина Н. В., Иванов П. В., Ведяева А. П., Иванова Е. В. Противовоспалительный эффект аскорбата хитозана в комплексной терапии заболеваний пародонта // Рос. стоматол. журн. 2013. № 2. С. 16‒19.
4. Способ лечения хронического катарального гингивита : пат. 2240770 РФ / Солнцев А. С., Большаков И. Н., Старостенко Т. Д., Майгуров А. А., Насибов С. М. Опубл. 2004. 5. Способ лечения хронического пародонтита: пат. 2301064 РФ / Большаков И. Н., Солнцев А. С., Майгуров А. А., Насибов С. М., Еремеев А. В. Опубл. 2005.
6. Иванов П. В. Патогенетическое обоснование и внедрение в практику новых регенеративных методов лечения генерализованного пародонтита : автореф. дис. ... д-ра мед. наук. Саратов, 2013. 51 с.
7. Asahara T., Masuda H., Takahashi T., Kalka C., Pastore C., Silver M., Kearne M., Magner M., Isner J. M. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization // Circ Res. 1999. Vol. 85, № 3. Р. 221‒228.
8. Hoeben A., Landuyt B., Highley M. S., Wildiers H., Van Oosterom A. T., De Bruijn E. A. Vascular endothelial growth factor and angiogenesis // Pharmacol. Rev. 2004. Vol. 56, № 4. Р. 549‒580.
9. Hoemann C. D., Chen G., Marchand C., Tran-Khanh N., Thibault M., Chevrier A., Sun J., Shive M. S., Fernandes M. J., Poubelle P. E., Centola M., El-Gabalawy H. Scaffold-guided subchondral bone repair : implication of neutrophils and alternatively activated arginase-1+ macrophages // Amer. J. Sports Med. 2010. Vol. 38, № 9. Р. 1845‒1856.
10. Schraufstatter I. U., Zhao M., Khaldoyanidi S. K., Discipio R. G. The chemokine CCL18 causes maturation of cultured monocytes to macrophages in the M2 spectrum // Immunology. 2012. Vol. 135, № 4. Р. 287–298.
11. Eaton K. V., Yang H. L., Giachelli C. M., Scatena M. Engineering macrophages to control the infl ammatory response and angiogenesis // Exp. Cell Res. 2015. Vol. 339, № 2. Р. 300‒309.
12. Ono M., Inkson C. A., Kilts T. M., Young M. F. WISP-1/ CCN4 regulates osteogenesis by enhancing BMP-2 activity // J. Bone Miner Res. 2011. Vol. 26, № 1. Р. 193‒208.
13. Khan U. A., Hashimi S. M., Bakr M. M., Forwood M. R., Morrison N. CCL2 and CCR2 are essential for the formation of osteoclasts and foreign body giant cells // J. Cell Biochem. 2016. Vol. 117, № 2. Р. 382‒389.
14. Endo I., Mitsui T., Nishino M., Oshima Y., Matsumoto T. Diurnal fl uctuation of edema synchronised with plasma VEGF concentration in a patient with POEMS syndrome // Intern. Med. 2002. Vol. 41. P. 1196–1198.
15. Henriksen K., Karsdal M., Delaisse J. M., Engsig M. T. RANKL and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERK1/2dependent mechanism // J. Biol. Chem. 2003. Vol. 278. P. 48745–48753.
16. Yang Q. VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin // Matrix Biol. 2008. Vol. 27. Р. 589–599.
17. Kaplan R. N., Riba R. D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D. D., Jin D. K., Shido K., Kerns S. A., Zhu Z., Hicklin D., Wu Y., Port J. L., Altorki N., Port E. R., Ruggero D., Shmelkov S. V., Jensen K. K., Rafi i S., Lyden D. VEGFR1positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche // Nature. 2005. Vol. 438. P. 820–827.
18. Eubank T. D., Roberts R., Galloway M., Wang Y., Cohn D. E., Marsh C. B. GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice // Immunity. 2004. Vol. 21, № 6. Р. 831‒842.
19. Roda J. M., Wang Y., Sumner L. A., Phillips G. S., Marsh C. B., Eubank T. D. Stabilization of HIF-2α induces sVEGFR-1 production from tumor-associated macrophages and decreases tumor growth in a murine melanoma model // J. Immunol. 2012. Vol. 189, № 6. Р. 3168‒3177.
20. Zhao J., Chen L., Shu B., Tang J., Zhang L., Xie J., Liu X., Xu Y., Qi S. Granulocyte/Macrophage ColonyStimulating Factor Infl uences Angiogenesis by Regulating the Coordinated Expression of VEGF and the Ang/ Tie System // PLoS ONE. 2014. Vol. 9, № 3. e92691.
21. Yan H., Chen J., Peng X. Recombinant human granulocyte-macrophage colony-stimulating factor hydrogel promotes healing of deep partial thickness burn wounds // Burns. 2012. Vol. 38. Р. 877–881.