Cite this article as:
Malinkina О. N., Gegel N. O., Shipovskaya A. B. Influence of Ascorbic Acid Isoforms on the Hydrodynamic Behavior of Chitosan Ascorbate Macromolecules in Aqueous Solution. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2019, vol. 19, iss. 2, pp. 152-164. DOI: https://doi.org/10.18500/1816-9775-2019-19-2-152-164
Influence of Ascorbic Acid Isoforms on the Hydrodynamic Behavior of Chitosan Ascorbate Macromolecules in Aqueous Solution
The hydrodynamic behavior of chitosan macromolecules in aqueous solutions of ascorbic acid (AscA) diastereomers was studied by means of capillary viscometry. A comparison of these systems with chitosan solutions in such traditional solvent media as hydrochloric and acetic acids, Na-acetate buffer was made. Concentration dependencies of the specific viscosity were plotted, and the intrinsic viscosity and the Huggins constant were evaluated. The deterioration of the thermodynamic quality of the water–acid mixture as a solvent for chitosan in the HCl→СН3СООН→СН3СООН + СН3СООNа→AscA row and with an increase in the AscA concentration was established. The effect of the isomeric form of AscA on the viscometric parameters, the hydrodynamic volume of macromolecules and the manifestation of their polyelectrolyte properties was found. In aqueous solutions of L- and D-AscA with the same values of pH and ionic strength, the most swollen coils exist in the presence of L-AscA and in D-AscA if NaCl added. The formation of the salt form of chitosan when dissolved in AscA was proven using IR spectroscopy, differences in the structures of chitosan L- and D-ascorbate were established. SEM revealed features of the morphology of air-dry powders of chitosan–AscA salts, namely: particles of chitosan L-ascorbate are characterized by a rougher surface and less uniform texture of layers in the sample bulk as compared to chitosan D-ascorbate. The regularities established are explained the influence of the isomeric AscA form on the spatial configuration of the macromolecules of chitosan L- and D-ascorbate and their hydrodynamic conformation in aqueous solutions.
1. Rinaudo M. Physicochemical behaviour of semi-rigid biopolymers in aqueous medium. Food Hydrocolloids, 2017, vol. 68, pp. 122–127. DOI: https://doi.org/10.18500/10.1016/j.foodhyd.2016.09.015
2. Cho J., Heuzey M. C., Bégin A., Carreau P. J. Viscoelastic properties of chitosan solutions: Effect of concentration and ionic strength. J. Food Eng., 2006, vol. 74, no. 4, pp. 500–515. DOI: https://doi.org/10.18500/10.1016/j.jfoodeng.2005.01.047
3. Schatz C., Viton C., Delair T., Pichot C., Domard A. Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromol. 2003, vol. 4, no. 3, pp. 641−648. DOI: https://doi.org/10.18500/10.1021/bm025724c
4. Anthonsen M. W., Varum K. M., Smidsrod O. Solution properties of chitosans: conformation and chain stiffness of chitosans with different degrees of N-acetylation. Carbohyd. Polym., 1993, vol. 22, no. 3, pp. 193−201. DOI: https://doi.org/10.18500/10.1016/0144-8617(93)90140-Y
5. Desbrie`res J. Viscosity of semifl exible chitosan solution: Infl uence of concentration, temperature, and role of intermolecular interactions. Biomacromol., 2002, vol. 3, no. 2, pp. 342–349. DOI: https://doi.org/10.18500/10.1021/bm010151+
6. Berth G., Dautzenberg H., Peter M. G. Physico-chemical characterization of chitosans varying in degree of acetylation. Carbohyd. Polym., 1998, vol. 36, no. 2–3, pp. 205−216. DOI: https://doi.org/10.18500/10.1016/S0144-8617(98)00029-0
7. Hamdine M., Heuzey M. C., Bégin A. Effect of organic and inorganic acids on concentrated chitosan solutions and gels. Intern. J. Biol. Macromol., 2005, vol. 37, no. 3, pp. 134−142. DOI: https://doi.org/10.18500/10.1016/j.ijbiomac.2005.09.009
8. Shamov M. V., Bratskaya S. Y., Avramenko V. A. Interaction of carboxylic acids with chitosan: effect of pK and hydrocarbon chain length. J. Colloid Interface Sci., 2002, vol. 249, pp. 316−321. DOI: https://doi.org/10.18500/10.1006/jcis.2002.8248
9. Costa C. N., Teixeira V. G., Delpech M. C., Souza J. V. S., Costa M. A. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohyd. Polym., 2015, vol. 133, pp. 245–250. DOI: https://doi.org/10.18500/10.1016/j.carbpol.2015.06.094
10. Eich A., Wolf B. A. Intrinsic viscosities of polyelectrolytes: determination and modeling of the effects of extra salt. ChemPhysChem., 2011, vol. 12, no. 15, pp. 2786− 2790. DOI: https://doi.org/10.18500/10.1002/cphc.201100439
11. Kolsanova E. V., Orozaliev E. E., Shipovskaya A. B. Viscosity properties of chitosan solutions in acetic acid and sodium acetate buffer. Izv. Saratov Univ. (N. S.). Ser. Chemistry. Biology. Ecology, 2014, vol. 14, iss. 2, pp. 5−9 (in Russian).
12. Kasaai M. R. Calculation of Mark – Houwink – Sakurada (MHS) equation viscometric constants for chitosan in any solvent-temperature system using experimental reported viscometric constants data. Carbohyd. Polym., 2007, vol. 68, no. 3, pp. 477–488. DOI: https://doi.org/10.18500/10.1016/j.carbpol.2006.11.006
13. Kulish E. I., Tuktarova I. F., Chernova V. V., Abzal’dinov H. S., Zaikov G. E. Metod viskozimetrii kak sposob ocenki konformacionnogo sostoyaniya hitozana v rastvore [Viscometry method as a way to assess the information state of chitosan in solution]. Vestnik Kazanskogo Tekhnologicheskogo Universiteta, 2013, no. 14, pp. 140−143 (in Russian).
14. Osman M., Fayed S. A., Ghada I. M., Romeilah R. M. Protective effects of chitosan, ascorbic acid and gymnema sylvestre against hypercholesterolemia in male rats. Aust. J. Basic Appl. Sci., 2010, vol. 4, no. 1, pp. 89−98.
15. Kanauchi O., Deuchi K., Imasato Y., Kobayashi E. Increasing effect of a chitosan and ascorbic acid mixture on fecal dietary fat excretion. Biosci. Biotechnol. Biochem., 1994, vol. 58, no. 9, pp. 1617–1620. DOI: https://doi.org/10.18500/10.1271/bbb.58.1617
16. Tsujikawa T., Kanauchi O., Andoh A., Saotome T., Sasaki M., Fujiyama Y., Bamba T. Supplement of a chitosan and ascorbic acid mixture for Crohn’s disease. Nutrition, 2003, vol. 19, no. 2, pp. 137−139. DOI: https://doi.org/10.18500/10.1016/S0899-9007(02)00958-9
17. Rajendran K., Vallinayagam S., Deepak V., Mahadevan S. Synthesis and characterization of chitosan ascorbate nanoparticles for therapeutic inhibition for cervical cancer and their in silico modeling. Ind. Eng. Chem. Res., 2018, vol. 62, pp. 239−249. DOI: https://doi.org/10.18500/10.1016/j.jiec.2018.01.001
18. Muzzarelli R. A. A. Removal of uranium from solutions and brines by a derivative of ascorbic acid and chitosan. Carbohyd. Polym., 1985, vol. 5, no. 2, pp. 85–89. DOI: https://doi.org/10.18500/10.1016/0144-8617(85)90026-8
19. Yanagiguchi K. Wound healing following direct pulp capping with chitosan-ascorbic acid complex in rat incisors. Korean Chitin Chitosan Journal, 2000, vol. 5, no. 3, pp. 182–182.
20. Hafsa J., Charfeddine B., Smach M. A., Limem K., Majdoub H., Sonia R. Synthesis, characterization, antioxidant and antibacterial proprieties of chitosan ascorbate. Intern. J. Pharm. Chem. Biol. Sci., 2014, vol. 4, no. 4, pp. 1072−1081.
21. Muzzarelli R., Biagini G., Pugnaloni A., Filippini O., Baldassarre V., Castaldini C., Rizzoli C. Reconstruction of parodontal tissue with chitosan. Biomaterials., 1989, vol. 10, no. 9, pp. 598–603. DOI: https://doi.org/10.18500/10.1016/0142-9612(89)90113-0
22. Fidler M. C., Davidsson L., Zeder C., Hurrell R. F. Erythorbic acid is a potent enhancer of nonheme-iron absorption. Am. J. Clin. Nutr., 2004, vol. 79, no. 1, pp. 99–102. DOI: https://doi.org/10.18500/10.1093/ajcn/79.1.99
23. Ogawa K., Nakata K., Yamamoto A., Nitta Y., Yui T. X-ray study of chitosan L- and D-ascorbates. Chem. Mater., 1996, vol. 8, pp. 2349−2351. DOI: https://doi.org/10.18500/10.1021/cm9601751
24. Shipovskaya A. B., Zudina I. V., Fomina V. I., Malinkina O. N. Novel antimicrobial drugs based on complex chitosan salts with chiral organic ligands. Butlerov Commun., 2015, vol. 41, no. 3, pp. 82−94 (in Russian).
25. Gegel N. O., Zhuravleva Yu. Yu., Shipovskaya A. B., Malinkina O. N., Zudina I. V. Infl uence of chitosan ascorbate chirality on the gelation kinetics and properties of siliconchitosan- containing glycerohydrogels. Polymers, 2018, vol. 10, no. 3, pp. 259. DOI: https://doi.org/10.18500/10.3390/polym10030259
26. Gegel N. O., Zudina I. V., Malinkina O. N., Shipovskaya A. B. Effect of ascorbic acid isomeric forms on antibacterial activity of its chitosan salts. Microbiology, 2018, vol. 87, no. 5, pp. 732−737. DOI: https://doi.org/10.18500/10.1134/S0026261718050107
27. Zhuravleva Yu. Yu., Malinkina O. N., Gegel N. O., Golyadkina A. A., Shipovskaya A. B. Physico-mechanical Properties of Silicon-chitosan-containing Glycerohydrogels Plates Based on Chitosan L- and D-ascorbates. Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2018, vol. 18, iss. 2, pp. 154–162 (in Russian). DOI: https://doi.org/10.18500/10.18500/1816-9775-2018-18-2-154-162
28. Lugovitskaya T. N., Shipovskaya A. B. Physicochemical properties of aqueous solutions of L-aspartic acid containing chitosan. Russian Journal of General Che mistry, 2017, vol. 87, no. 4, pp. 782−787. DOI: https://doi.org/10.18500/10.1134/S1070363217040193
29. Shipovskaya A. B., Shchegolev S. Yu. Fazovyj analiz i opticheskaya aktivnost’ sistem efi r cellyulozy – mezofazogennyj rastvoritel’ [Phase analysis and optical activity of cellulose ether systems – mesophasogenic solvent]. Saratov, Izd-vo Sarat. un-ta, 2014. 266 p. (in Russian).
30. Ambrosi M., Nostro P. L., Fratini E., Giustini L., Ninham B. W., Baglioni P. Effect of headgroup chirality in nanoassemblies. Part 1. Self-assembly of D-isoascorbic acid derivatives in water. J. Phys. Chem. B., 2009, vol. 113, no. 5, pp. 1404−1412. DOI: https://doi.org/10.18500/10.1021/jp8092644
31. Goryacheva V. A., Shipovskaya A. B. Kalorimetricheskoe issledovanie rastvoreniya hitozana v vodnyh rastvorah L- i D-askorbinovoj kisloty [Calorimetric study of the dissolution of chitosan in aqueous solutions of L- and D- ascorbic acid]. Sovremennye problemy teoreticheskoj i eksperimental’noj himii: sb. nauch. tr. XII Vseros. konf. mol. uch. s mezhdunarod. uch. 2017, Saratov, Saratovskiy Istochnik Publ., 2017, pp. 130−132 (in Russian).
32. Malinkina O. N., Provozina A. A., Shipovskaya A. B. Evaluation of the chemical interaction between chitosan hydrochloride and ascorbic acid by IR and NMR spectro scopy. Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2014, vol. 14, iss. 3, pp. 20−27 (in Russian).
33. Singh J., Dutta P. K. Spectroscopic and conformational study of chitosan acid salts. J. Polym. Res., 2009, vol. 16, pp. 231–238. DOI: https://doi.org/10.18500/10.1007/s10965-008-9221-3
34. Yadav R. A., Rani P., Kumar M., Singh R., Singh P., Singh N. P. Experimental IR and Raman spectra and quantum chemical studies of molecular structures, conformers and vibrational characteristics of L-ascorbic acid and its anion and cation. Spectrochim. Acta A, 2011, vol. 84, no. 1, pp. 6−21. DOI: https://doi.org/10.18500/10.1016/j.saa.2011.07.043
35. Dolle C., Magrone P., Riva S., Ambrosi M., Fratini E., Peruzzi N., Nostro P. L. Symmetric and asymmetric bolaamphiphiles from ascorbic acid. J. Phys. Chem. B., 2011, vol. 115, no. 40, pp. 11638−11649. DOI: https://doi.org/10.18500/10.1021/jp204920y