Cite this article as:
Postnov D. E. Laser-induced Vasomotor Responses on Chorioallantoic Membrane. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2018, vol. 18, iss. 1, pp. 71-?. DOI: https://doi.org/10.18500/1816-9775-2018-18-1-71-78
Laser-induced Vasomotor Responses on Chorioallantoic Membrane
The strength and the specific featu res of the vasomotor responses provide important information about the healthy state of the blood vessel, since it s contraction or dilation is caused by the activation or relaxation of vascular smooth muscle cells of the vascular wall and appears to be a universal response to the a number of physiological regulatory pathways, including humoral and neurogenic ones. While the methods for testing the isolated vessel fragment ex vivo are well developed and widely used in research, a similar problem with respect to a functioning microcirculatory network is much more complicated and largely unresolved. In this paper, we investigate the possibilities of a new method of to test a fragment of an arterial vessel within the network. Namely, we study the vasomotor reactions of a single arterial vessel of a chick embryo chorioallantoic membrane in situ induced by laser irradiation. Our results show that the reaction type (dilatation or constriction) depends essentially on the wavelength of the laser radiation. In a number of cases, a biphasic response is detected, when initial dilatation upon repeated exposures is replaced by constriction. The developed technique is proposed to be used as a nondestructive and non-contact experimental technique for the studies of microcirculatory network functions.
1. Фундаментальная и клиническая физиология : учебник для студентов высших учебных заведений / под ред. А. Г. Камкина, А. А. Каменского. М. : Академия, 2004. 1072 с.
2. Jensen L. J., Holstein-Rathlou N.-H. The vascular conducted response in cerebral blood fl ow regulation // J. of Cerebral Blood Flow & Metabolism. 2013. Vol. 33. P. 649–656.
3. Yuan T. Y., Yan Y., Wu Y.J., Xu X. N., Li L., Jiao X. Z., Xie P., Fang L. H., Du G. H. Vasodilatory effect of a novel Rho-kinase inhibitor, DL0805-2, on the rat mesenteric artery and its potential mechanisms // Cardiovasc Drugs Ther. 2014. Vol. 28(5). P. 415–424.
4. Noguchi M., Mori A., Sakamoto K., Nakahara T., Ishii K. Vasodilator effects of ibudilast on retinal blood vessels in anesthetized rats // Biol Pharm Bull. 2009. Vol. 32(11). P. 1924–1927.
5. Kezurer N., Farah N., Mandel Y. Endovascular Electrodes for Electrical Stimulation of Blood Vessels for Vasoconstriction – a Finite Element Simulation Study // Scientifi c Reports. 2016. Vol. 6. P. 31507.
6. Török J., Zemančíková A. Agmatine Modulation of Noradrenergic Neurotransmission in Isolated Rat Blood Vessels // Chin. J. Physiol. 2016. Vol. 59(3). P. 131–138.
7. Liu W., Wang X., Bai K., Lin M., Sukhorukov G., Wang W. Microcapsules functionalized with neuraminidase can enter vascular endothelial cells in vitro // J. R. Soc. Interface. 2014. Vol. 11(101). P. 20141027.
8. Postnov D. D., Tuchin V. V., Sosnovtseva O. Estimation of vessel diameter and blood fl ow dynamics from laser speckle images // Biomed. Opt. Express. 2016. Vol. 7. P. 2759–2768.
9. Тучин В. В. Лазеры и волоконная оптика в биомедицинских исследованиях. 2-е изд., испр. и доп. М. : ФИЗМАТЛИТ, 2010. 488 с.
10. Avci P., Gupta A., Sadasivam M., Vecchio D., Pam Z., Pam N., Hamblin M.R. Low-level laser (light) therapy (LLLT) in skin : stimulating, healing, restoring // Semin. Cutan. Med. Surg. 2013. Vol. 32 (1). P. 41–52.
11. Черток В. М., Коцюба А. Е., Беспалова Е. П. Особенности реакции сосудов микроциркуляторного русла некоторых органов на воздействие гелий-неонового лазера // ТМЖ. 2007. № 3 (29). С. 48–52.
12. Hamblin M. R., Demidova T. N. Mechanisms of low level light therapy // Proc. SPIE. 2006. Vol. 6140. P. 614001.
13. Владимиров Ю. А., Клебанов Г. И., Борисенко Г. Г., Осипов А. Н. Молекулярные и клеточные механизмы действия низкоинтенсивного лазерного излучения // Биофизика. 2004. Т. 49, № 2. С. 339–350.
14. Владимиров Ю. А., Осипов А. Н., Клебанов Г. И. Фотобиологические основы терапевтического применения лазерного облучения // Биохимия. 2004. Т. 69, № 1. С. 103–113.
15. Mittermayr R., Osipov A., Piskernik C., Haindl S., Dungel P., Weber C., Vladimirov Y. A., Redl H., Kozlov A. V. Blue laser light increases perfusion of a skin fl ap via release of nitric oxide from hemoglobin // Mol. Med. 2007. Vol. 13 (1–2). P. 22–29.
16. Dejam A., Hunter C.J., Pelletier M.M., Hsu L.L., Machado R. F., Shiva S., Power G. G., Kelm M., Gladwin M. T., Schechter A. N. Erythrocytes are the major intravascular storage sites of nitrite in human blood // Blood. 2005. Vol. 106 (2). P. 734–739.
17. Gustafsson F., Andreasen D., Salomonsson M., Jensen B. L., Holsein-Rathlou N.-H. Conducted vasoconstriction in rat mesenteric arterioles: role for dihydropyridine-insensitive Ca(2+) channels // Amer. J. Physiol. Heart Circ. Physiol. 2001. Vol. 280 (2). P. H582–H590.
18. McKenzie A. L. Physics of thermal processes in lasertissue interaction // Phys. in Med. and Biol. 1990. Vol. 35 (9). P. 1175.