Cite this article as:

Bagavova . ., Velichko N. S., Fedonenko Y. P. Obtaining a fluorescently labeled endophytic strain of bacteria Herbaspirillum lusitanum P6-12 for their detection in vivo and in vitro. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2021, vol. 21, iss. 3, pp. 286-291. DOI: https://doi.org/10.18500/1816-9775-2021-21-3-286-291


This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Heading: 
UDC: 
579.64
Language: 
Russian

Obtaining a fluorescently labeled endophytic strain of bacteria Herbaspirillum lusitanum P6-12 for their detection in vivo and in vitro

Тип статьи для РИНЦ: 
RAR научная статья
Abstract

The Herbaspirillum lusitanum P6-12 strain containing the vector plasmid pJN105TurboGFP, which encodes the synthesis of the green fluorescent protein GFP, and which has resistance to the antibiotic gentamicin, was obtained by electroporation. The constructed strain of H. lusitanum P6-12 in cultural, morphological and biochemical properties did not differ from the original typical natural strain of H. lusitanum P6-12. On solid growth media, the recombinant strain formed yellow-green colonies, fluorescent under UV irradiation. Upon inoculation with the resulting culture of plant objects, a green glow of the marked H. lusitanum P6-12 cells, actively colonizing the internal tissues of the host plant, was observed. The created strain can be used as a model strain for studying the patterns and characteristics of the behaviour of organisms in integrated systems, including for tracking bacterial cells during interaction with plants, assessing their survival, competitiveness, etc.

References
  1. Valverde A., Velazquez E., Gutierrez C., Cervantes E., Ventosa A., Igual J. M. Herbaspirillum lusitanum sp. nov., a novel nitrogen-fi xing bacterium associated with root nodules of Phaseolus vulgaris. Intern. J. Syst. Evol. Microbiol., 2003, vol. 53, no. 6, pp. 1979–1983. https://doi.org/10.1099/ijs.0.02677-0
  2. Weiss V. A., Faoro H., Tadra-Sfeir M. Z., Raittz R. T., Souza E. M. de, Monteiro R. A., Cardoso R. L., Wassem R., Chubatsu L. S., Huergo L. F., MullerSantos M., Steffens M. B., Rigo L. U., Pedrosa F. de O., Cruz L. M. Draft genome sequence of Herbaspirillum lusitanum P6-12, an endophyte isolated from root nodules of Phaseolus vulgaris. J. Bacteriol., 2012, vol. 194, no. 15, pp. 4136–4137. https://doi.org/10.1128/JB.00657-12
  3. Green E. R., Mecsas J. Bacterial secretion systems: an overview. Microbiology Spectrum, 2016, vol. 4, no. 1. https://doi.org/10.1128/microbiolspec.VMBF-0012-2015
  4. Smol’kina O. N., Shishonkova N. S., Yurasov N. A., Ignatov V. V. Capsular and extracellular polysaccharides of diazotrophic rhizobacteria Herbaspirillum seropedicae Z78. Microbiology, 2012, vol. 81, no. 3, pp. 345–352 (in Russian). Сырая биомасса растения, мг Raw plant biomass, mg Контроль Control с HIP6-12 Биология 291
  5. Schmidt M. A., Souza E. M., Baura V., Wassem R., Yates M. G., Pedrosa F. O., Monteiro R. A. Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz. J. Med. Biol. Res., 2011, vol. 44, no. 3, pp. 182–185. https://doi.org/10.1590/s0100-879x2011007500004
  6. Lavrenchuk L. S., Ermoshin A. A. Mikrobiologiya: praktikum [Microbiology: Practical Work]. Ekaterinburg, Izd-vo Ural. un-ta, 2019. 107 p. (in Russian).
  7. Monteiro R. A., Balsanelli E., Wassem R., Marin A., Brusamarello-Santos L. C. C., Schmidt A., TadraSfeir M. Z., Pankievicz V., Cruz L. M., Chubatsu L. S., Pedrosa F. O., Souza E. M. Herbaspirillum-Plant Interactions: Microscopical, Histological and Molecular Aspects. Plant Soil., 2012, vol. 356, pp. 175–196. https://doi.org/10.1007/s11104-012-1125-7
Full text (in Russian):