Cite this article as:

Ermakov A. V., Venig S. B. Prospects for the Development of Biomimetic Hybrid Materials Based on the Layer-by-Layer Assembly Technique. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2018, vol. 18, iss. 4, pp. 383-389. DOI: https://doi.org/10.18500/1816-9775-2018-18-4-383-389


This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Heading: 
UDC: 
54.01,544.01
Language: 
Russian

Prospects for the Development of Biomimetic Hybrid Materials Based on the Layer-by-Layer Assembly Technique

Abstract

Natural composite structures, such as horn bones and nacre (or socalled mother-of-pearl), are characterized by a structural organization ordered at the nanoscale. This material architecture has attracted a wide interest order to develop new hybrid composite materials with tunable mechanical properties. The сurrent review aimed to establish the prospects for the development of artificial methods for synthesis of mechanically strong biomimetic materials. In this paper, we provide a review on the current understanding of fundamental principles of the formation, the structure and properties of natural biomineralized composite materials, as well as a review of the results of synthetic routes for the synthesis of such materials, including sequential infiltration. In this approach calcium carbonate particles are supposed to be nucleated and grow within polymeric films, obtained via Layer-by-Layer (LbL) assembly technique. The important role of polymer matrices in combination with unique capabilities of LbL assembly technique in control over the film composition opens up a wide range of possibilities for synthesis of artificial composite films with unique mechanical characteristics. Since growth of inorganic phase is strongly determined by the nature of polymers in the matrix, the possibility of LbL technique to control the composition in nanoscale opens up a way to tune the mineralization process. Considering high biocompatibility of such materials this approach can find wide range of applications including tissue engineering and drug delivery systems.

References

1. Yan L., Huck W. T. S., Whitesides G. M. Self-assembled monolayers (SAMs) and synthesis of planar micro- and nanostructures // J. of Macromol. Science – Polymer Rev. 2004. Vol. 44, № 2. P. 175–206.

2. Kiryukhin M. V., Gorelik S. R., Man S. M., Subramanian G. S., Antipina M. N., Low H. Y., Sukhorukov G. B. Individually addressable patterned multilayer microchambers for site-specifi c release-on-demand // Macromol. Rapid Commun. 2013. Vol. 34, № 1. P. 87–93. 

3. Decher G., Schlenoff J. B. Multilayer Thin Films // Multilayer Thin Films : Sequential Assembly of Nanocomposite Materials: Second Edition / eds. G. Decher, J. B. Schlenoff. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2012. Vol. 1–2. P. 511–515. 

4. Hammond P. T. Form and Function in Multilayer Assembly : New Applications at the Nanoscale // Adv. Mater. 2004. Vol. 16, № 15. P. 1271–1293.

5. Decher G. Fuzzy nanoassemblies : Toward layered polymeric multicomposites // Science. 1997. Vol. 277, № 5330. P. 1232–1237. 

6. Kotov N. A., Dekany I., Fendler J. H. Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films // J. Phys. Chem. 1995. Vol. 99, № 35. P. 13065–13069. 

7. Aliev F. G., Correa-Duarte M. A., Mamedov A., Ostrander J. W., Giersig M., Liz-Marzán L. M., Kotov N. A. Layer-by-Layer Assembly of Core-Shell Magnetite Nanoparticles : Effect of Silica Coating on Interparticle Interactions and Magnetic Properties // Adv. Mater. 1999. Vol. 11, № 12. P. 1006–1010. 

8. Porcel C. H., Izquierdo A., Ball V., Decher G., Voegel J.-C., Schaaf P. Ultrathin Coatings and (Poly(glutamic acid)/Polyallylamine) Films Deposited by Continuous and Simultaneous Spraying // Langmuir. 2005. Vol. 21, № 2. P. 800–802.

9. Lavalle P., Voegel J.-C., Vautier D., Senger B., Schaaf P., Ball V. Dynamic Aspects of Films Prepared by a Sequential Deposition of Species : Perspectives for Smart and Responsive Materials // Adv. Mater. 2011. Vol. 23, № 10. P. 1191–1221. 

10. Podsiadlo P., Kaushik A. K., Arruda E. M., Waas A. M., Shim B. S., Xu J., Nandivada H., Pumplin B. G., Lahann J., Ramamoorthy A., Kotov N. A. Ultrastrong and stiff layered polymer nanocomposites // Science. 2007. Vol. 318, № 5847. P. 80–83. 

11. Schlenoff J. B., Ly H., Li M. Charge and mass balance in polyelectrolyte multilayers // J. Amer. Chem. Soc. 1998. Vol. 120, № 30. P. 7626–7634. 

12. Chen P.-Y., Lin Y. M., Lin Y.-S., Seki Y., Stokes G., Peyras J., Olevsky E., Meyers M., McKittrick J. Structure and mechanical properties of selected biological materials // J. Mech. Behav. Biomed. Mater. 2008. Vol. 3, № 1. P. 208–226. 

13. Wu M., Shuai H., Cheng Q., Jiang L. Bioinspired green composite lotus fi bers // Angew. Chem. Intern. Ed. 2014. Vol. 126, № 14. P. 3426–3429.

14. Wang J., Lin L., Cheng Q., Jiang L. A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel // Angew. Chem. Intern. Ed. 2012. Vol. 51, № 19. P. 4676–4680.

15. Tang Z., Kotov N. A., Magonov S., Ozturk B. Nanostructured artifi cial nacre // Nat. Mater. 2003. Vol. 2, № 6. P. 413–418. 

16. Rubner M. Synthetic sea shell // Nature. 2003. Vol. 423, № 6943. P. 925–926. 

17. Boskey A. L. Matrix Proteins and Mineralization : An Overview // Connect. Tissue Res. 1996. Vol. 35, № 1–4. P. 357–363. 

18. Heywood B. R., Mann S. Template- directed nucleation and growth of inorganic materials // Adv. Mater. 1994. Vol. 6, № 1. P. 9–20. 

19. Cheng Q., Jiang L., Tang Z. Bioinspired layered materials with superior mechanical performance // Acc. Chem. Res. 2014. Vol. 47, № 4. P. 1256–1266. 

20. Cheng Q., Li M., Jiang L., Tang Z. Bioinspired layered composites based on fl attened double-walled carbon nanotubes // Adv. Mater. 2012. Vol. 24, № 14. P. 1838–1843. 

21. Wang J., Cheng Q., Lin L., Jiang L. Synergistic toughening of bioinspired poly(vinyl alcohol)-clay- nanofi brillar cellulose artifi cial nacre // ACS Nano. 2014. Vol. 8, № 3. P. 2739–2745. 

22. Yao H. Bin, Fang H. Y., Tan Z. H., Wu L. H., Yu S. H. Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid fi lms // Angew. Chem. Intern. Ed. 2010. Vol. 49, № 12. P. 2140–2145. 

23. Yao H.-B., Fang H.-Y., Wang X.-H., Yu S.-H. Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials // Chem. Soc. Rev. 2011. Vol. 40, № 7. P. 3764. 

24. Yao H.-B., Ge J., Mao L.-B., Yan Y.-X., Yu S.-H. 25th Anniversary Article: Artifi cial Carbonate Nanocrystals and Layered Structural Nanocomposites Inspired by Nacre : Synthesis, Fabrication and Applications // Adv. Mater. 2014. Vol. 26, № 1. P. 163–188. 

25. Wang J., Cheng Q., Tang Z. Layered nanocomposites inspired by the structure and mechanical properties of nacre // Chem. Soc. Rev. 2012. Vol. 41, № 3. P. 1111–1129. 

26. Cui W., Li M., Liu J., Wang B., Zhang C., Jiang L., Cheng Q. A strong integrated strength and toughness artifi cial nacre based on dopamine cross-linked graphene oxide // ACS Nano. 2014. Vol. 8, № 9. P. 9511–9517.

27. Xu A.-W., Ma Y., Cölfen H. Biomimetic mineralization // J. Mater. Chem. 2007. Vol. 17, № 5. P. 415–449. 

28. Goffi n A. J. J., Rajadas J., Fuller G. G. Interfacial Flow Processing of Collagen // Langmuir. 2010. Vol. 26, № 5. P. 3514–3521. 

29. Wan S., Li Y., Peng J., Hu H., Cheng Q., Jiang L. Synergistic toughening of graphene oxide-molybdenum disulfi dethermoplastic polyurethane ternary artifi cial nacre // ACS Nano. 2015. Vol. 9, № 1. P. 708–714. 

30. Yao H. Bin, Mao L. B., Yan Y. X., Cong H. P., Lei X., Yu S. H. Gold nanoparticle functionalized artifi cial nacre: Facile in situ growth of nanoparticles on montmorillonite nanosheets, self-assembly, and their multiple properties // ACS Nano. 2012. Vol. 6, № 9. P. 8250–8260.

31. Yao H.-B., Wu L.-H., Cui C.-H., Fang H.-Y., Yu S.-H. Direct fabrication of photoconductive patterns on LBL assembled graphene oxide/PDDA/titania hybrid fi lms by photothermal and photocatalytic reduction // J. Mater. Chem. 2010. Vol. 20, № 25. P. 5190. 

32. Cölfen H., Mann S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures // Angew. Chem. Intern. Ed. 2003. Vol. 42, № 21. P. 2350–2365. 

33. Smith L. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry // Local Gov. Stud. 2005. Vol. 31, № 4. P. 511–526. 

34. Arakaki A., Shimizu K., Oda M., Sakamoto T., Nishimura T., Kato T. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials : organic molecular control of self-organization of hybrids // Org. Biomol. Chem. 2015. Vol. 13, № 4. P. 974–989.

35. Mahamid J., Addadi L., Weiner S. Crystallization pathways in bone // Cells Tissues Organs. 2011. Vol. 194, № 2–4. P. 92–97. 

36. Li Y., Asadi A., Monroe M. R., Douglas E. P. pH effects on collagen fi brillogenesis in vitro : Electrostatic interactions and phosphate binding // Mater. Sci. Eng. C. Elsevier B. V. 2009. Vol. 29, № 5. P. 1643–1649. 

37. Zaera F. Surface chemistry at the liquid/solid interface // Surf. Sci. 2011. Vol. 605, № 13–14. P. 1141–1145. 

38. Knoll W. Interfaces and thin films as seen by bound electromagnetic waves // Annu. Rev. Phys. Chem. 1998. Vol. 49, № 1. P. 569–638. 

39. Nudelman F., Chen H. H., Goldberg H.A., Weiner S., Addadi L. Spiers Memorial Lecture : Lessons from biomineralization : comparing the growth strategies of mollusc shell prismatic and nacreous layers in Atrina rigida // Faraday Discuss. 2007. Vol. 136. P. 9.

40. Rousseau M., Lopez E., Stempfl é P., Brendlé M., Franke L., Guette A., Naslain R., Bourrat X. Multiscale structure of sheet nacre // Biomaterials. 2005. Vol. 26, № 31. P. 6254–6262. 

41. Addadi L., Weiner S. Biomineralization: mineral formation by organisms // Phys. Scr. 2014. Vol. 89, № 9. P. 098003.

42. Addadi L., Joester D., Nudelman F., Weiner S. Mollusk shell formation : A source of new concepts for understanding biomineralization processes // Chem. – A Eur. J. 2006. Vol. 12, № 4. P. 980–987. 

43. Vidavsky N., Addadi S., Mahamid J., Shimoni E., Ben-Ezra D., Shpigel M., Weiner S., Addadi L. Initial stages of calcium uptake and mineral deposition in sea urchin embryos // Proc. Natl. Acad. Sci. 2014. Vol. 111, № 1. P. 39–44. 

44. Mahamid J., Sharir A., Addadi L., Weiner S. Amorphous calcium phosphate is a major component of the forming fi n bones of zebrafi sh : Indications for an amorphous precursor phase // Proc. Natl. Acad. Sci. 2008. Vol. 105, № 35. P. 12748–12753. 

45. Seidl B., Huemer K., Neues F., Hild S., Epple M., Ziegler A. Ultrastructure and mineral distribution in the tergite cuticle of the beach isopod Tylos europaeus Arcangeli, 1938 // J. Struct. Biol. 2011. Vol. 174, № 3. P. 512–526. 

46. Xie L., Zhu F., Zhou Y., Yang C., Zhang R. Molecular Approaches to Understand Biomineralization of Shell Nacreous Layer. Berlin ; Heidelberg : Springer, 2011. 352 p. 

47. Weiner S. Biomineralization : A structural perspective // J. Struct. Biol. 2008. Vol. 163, № 3. P. 229–234. 

48. Weiner S. An Overview of Biomineralization Processes and the Problem of the Vital Effect // Rev. Mineral. Geochem. 2003. Vol. 54, № 1. P. 1–29. 

49. Cheng Q., Wu M., Li M., Jiang L., Tang Z. Ultratough Artifi cial Nacre Based on Conjugated Cross-linked Graphene Oxide // Angew. Chem. Intern. Ed. 2013. Vol. 52, № 13. P. 3750–3755. 

50. Weiss I.M., Tuross N., Addadi L., Weiner S. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite // J. Exp. Zool. 2002. Vol. 293, № 5. P. 478–491. 

51. Currey J. D. Mechanical Properties of Mother of Pearl in Tension // Proc. R. Soc. B Biol. Sci. 1977. Vol. 196, № 1125. P. 443–463. 

52. Currey J. D., Zioupos P., Peter D., Casinos A. Mechanical properties of nacre and highly mineralized bone // Proc. R. Soc. B Biol. Sci. 2001. Vol. 268, № 1462. P. 107–111. 

53. Elliott D. Structure and function of mammalian tendon // Biol. Rev. 1965. Vol. 40, № 3. P. 392–421. 

54. Riley G. Tendinopathy : from basic science to treatment // Nat. Clin. Pract. Rheumatol. 2008. Vol. 4, № 2. P. 82–89. 

55. Jackson A.P., Vincent J. F. V., Turner R. M. The Mechanical Design of Nacre // Proc. R. Soc. B Biol. Sci. 1988. Vol. 234, № 1277. P. 415–440. 

56. Nudelman F., Gotliv B. A., Addadi L., Weiner S. Mollusk shell formation : Mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre // J. Struct. Biol. 2006. Vol. 153, № 2. P. 176–187. 

57. Deville S. Freezing as a Path to Build Complex Composites // Science. 2006. Vol. 311, № 5760. P. 515–518. 

58. Becker A., Ziegler A., Epple M. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate // Dalt. Trans. 2005. № 10. P. 1814. 

59. Burghard Z., Tucic A., Jeurgens L. P. H., Hoffmann R. C., Bill J., Aldinger F. Nanomechanical Properties of Bioinspired Organic–Inorganic Composite Films // Adv. Mater. 2007. Vol. 19, № 7. P. 970–974. 

60. Katti K. S., Katti D. R., Pradhan S. M., Bhosle A. Platelet interlocks are the key to toughness and strength in nacre // J. Mater. Res. 2005. Vol. 20, № 5. P. 1097–1100.

61. Currey J. D. The design of mineralised hard tissues for their mechanical functions // J. Exp. Biol. 1999. Vol. 202, № 2. P. 3285–3294.

62. Weiner S., Traub W., Wagner H.D. Lamellar bone : Structure-function relations // J. Struct. Biol. 1999. Vol. 126, № 3. P. 241–255.

63. Evans J. S. “Tuning in” to Mollusk Shell Nacre- and Prismatic-Associated Protein Terminal Sequences. Implications for Biomineralization and the Construction of High Performance Inorganic–Organic Composites // Chem. Rev. 2008. Vol. 108, № 11. P. 4455–4462. 

64. Yao H. Bin, Tan Z. H., Fang H. Y., Yu S. H. Artifi cial nacrelike bionanocomposite fi lms from the self-assembly of chitosan-montmorillonite hybrid building blocks // Angew. Chem. Intern. Ed. 2010. Vol. 49, № 52. P. 10127–10131.

65. Gehrke N., Nassif N., Pinna N., Antonietti M., Gupta H. S., Cölfen H. Retrosynthesis of nacre via amorphous precursor particles // Chem. Mater. 2005. Vol. 17, № 26. P. 6514–6516. 

66. Nishimura T., Imai H., Oaki Y., Sakamoto T., Kato T. Preparation of Thin-film Hydroxyapatite/Polymer Hybrids // Chem. Lett. 2011. Vol. 40, № 5. P. 458–460. 

67. Kato T., Sugawara A., Hosoda N. Calcium Carbonate–Organic Hybrid Materials // Adv. Mater. 2002. Vol. 14, № 12. P. 869. 

68. Zolotoyabko E., Pokroy B. Biomineralization of calcium carbonate: structural aspects // Cryst. Eng. Comm. 2007. Vol. 9, № 12. P. 1156. 

69. Hosoda N., Sugawara A., Kato T. Template effect of crystalline poly(vinyl alcohol) for selective formation of aragonite and vaterite CaCO3 thin fi lms // Macromolecules. 2003. Vol. 36, № 17. P. 6449–6452. 

70. Nishimura T., Ito T., Yamamoto Y., Yoshio M., Kato T. Macroscopically Ordered Polymer/CaCO3 Hybrids Prepared by Using a Liquid-Crystalline Template // Angew. Chem. Intern. Ed. 2008. Vol. 47, № 15. P. 2800–2803. 

71. Veis A. Mineralization in Organic Matrix Frameworks // Rev. Mineral. Geochem. 2003. Vol. 54, № 1. P. 249–289.

72. Zuo S., Wei Y. Microstructure observation and mechanical behavior modeling for limnetic nacre // Acta Mech. Sin. 2008. Vol. 24, № 1. P. 83–89.

73. Meldrum F. C. Calcium carbonate in biomineralisation and biomimetic chemistry // Intern. Mater. Rev. 2003. Vol. 48, № 3. P. 187–224. 

74. Olszta M. J., Odom D. J., Douglas E. P., Gower L. B. A New Paradigm for Biomineral Formation: Mineralization via an Amorphous Liquid-Phase Precursor // Connect. Tissue Res. 2003. Vol. 44, № 1. P. 326–334.

75. Lakes R. Materials with structural hierarchy // Nature. 1993. Vol. 361, № 6412. P. 511–515. 76. Lapcik L. J., Smedt S. de, Lapcik L., Demeester J., Chabrecek P. Hyaluronan : Preparation, Structure, Properties and Applications // Chem. Rev. 1998. Vol. 88, № 3. P. 2663–2681.

Short text (in English): 
Full text (in Russian):