Cite this article as:
Kazimirova K. O., Shtykov S. N. Synthesis and Functionalization of Magnetite Мagnetic Nanoparticles with Сhitosan. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2018, vol. 18, iss. 2, pp. 126-133. DOI: https://doi.org/10.18500/1816-9775-2018-18-2-126-133
Synthesis and Functionalization of Magnetite Мagnetic Nanoparticles with Сhitosan
Superparamagnetic magnetite nanoparticles (MNP) have gained much attraction from the beginning of 21century because of its potential applications in biology, medicine, theranostics, physics, chemistry and chemical analysis due to unique multifunctional properties, including small size, superparamagnetic behavior, low toxicity, high adsorption properties used for magnetic solid-phase extraction (MSPE) in water purification and chemical analysis. It is well-known that colloidal MNP typically require a special and perfect surface coating, which prevents their self-aggregation, imparts the stability of colloid particles and functionalizes them for the various subsequent applications. The coating shell of MNP is responsible for the surface chemical activity that determines the nanoparticles behavior in a given medium. In this article, we describe the synthesis of MNP and compare the aggregation behavior of MNP coated by individual chitosan polymer molecules and their molecules cross-linked with glutaraldehyde. There are several methods and parameters like transmittance electron microscopy (TEM), dynamic light scattering (DLS), IR-spectroscopy, size and zeta-potential values were used to comparison of unmodified and modified MNP during time, chitosan concentration and pH variation. According TEM the average size of MNP synthesized by co-precipitation of Fe(III) and Fe(II) 2:1 salts was 8–10 nm with zeta-potential about zero. It was found that TEM average size of modified MNP was about 15 nm. A positive zetapotential of MNP modified with individual chitosan molecules (90kD) at pH 4 was 31–62 мV with maximum at 44 мV as well as modified by cross-linked chitosan within 43–65 mV with maximum at 55 mV. It was established that DLS size and zeta-potential value depend on the chitosan concentration (the best is 0.2% in 2% acetic acid solution) and time of storage the colloidal solution. Isoelectric point of MNP modified by chitosan shifts from 6.2 to 6.9 pH value. It was concluded that MNP modified by cross-linked chitosan are more suitable for MSPE of anionic molecules at pH 3–5.
1. Colombo M., Carregal-Romero S., Casula M. F., Gutierrez L., Morales M. P., Böhm I. B., Heverhagen J. T., Prosperia D., Parak W. J. Biological applications of magnetic nanoparticles // Chem. Soc. Rev. 2012. Vol. 41. P. 4306–4334.
2. Gupta A. K., Naregalkar R. R., Vaidya V. D., Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications // Nanomedicine. 2007. Vol. 2, № 1. P. 23–39.
3. Yan K., Li P., Zhu H., Zhou Y., Ding J., Shen J., Li Z., Xu Z. Chu P.K. Recent advances in multifunctional magnetic nanoparticles and applications to biomedical diagnosis and treatment // RSC Adv. 2013. Vol. 3. P. 10598–10618. https://doi.org/10.1039/c3ra40348c
4. Veiseh O., Gunn J.W., Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging // Adv. Drug Delivery Rev. 2010. Vol. 62. P. 284–304.
5. Mou X., Ali Z., Li S., He N. Applications of Magnetic Nanoparticles in Targeted Drug Delivery System // J. Nanosci. Nanotechnol. 2015. Vol. 15. P. 54–62.
6. Hajba L., Guttman A. The use of magnetic nanoparticles in cancer theranostics: Toward handheld diagnostic devices // Biotechnol. Adv. 2016. Vol. 34. P. 354–361.
7. Wen C.-Y., Wu L.-L., Zhang Z.-L., Liu Y.-L., Wei S.-Z., Hu J., Tang M., Sun E.-Z., Gong Y.-P., Yu J., Pang D.-W. Quick-Response Magnetic Nanospheres for Rapid, Effi cient Capture and Sensitive Detection of Circulating Tumor Cells // ACS Nano. 2014. Vol. 8. P. 941–949.
8. Ambashta R.D., Sillanpää M. Water purifi cation using magnetic assistance: A review // J. Hazard. Mater. 2010. Vol. 180. P. 38–49.
9. Chen L., Wang T., Tong J. Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples // Trends Anal. Chem. 2011. Vol. 30, № 7. P. 1095–1108.
10. Giakisikli G., Anthemidis A. N. Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review // Anal. Chim. Acta. 2013. Vol. 789. P. 1–16.
11. Толмачева В. В., Апяри В. В., Кочук Е. В., Дмитриенко С. Г. Магнитные сорбенты на основе наночастиц оксидов железа для выделения и концентрирования органических соединений // Журн. аналит. химии. 2016. Т. 71, № 4. С. 339–356.
12. Xie L., Jiang R., Zhu F., Liu H., Ouyang G. Application of functionalized magnetic nanoparticles in sample preparation // Anal. Bioanal. Chem. 2014. Vol. 406. P. 377–399.
13. Dios A. S. de, Diaz-Garcia M. E. Multifunctional nanoparticles : Analytical prospects // Anal. Chim. Acta. 2010. Vol. 666. P. 1–22.
14. Егунова О. Р., Константинова Т. А., Штыков С. Н. Магнитные наночастицы магнетита в разделении и концентрировании // Изв. Сарат. ун-та. Нов. сер. Сер. Химия. Биология. Экология. 2014. Т. 14, вып. 4. С. 27–34.
15. Бычкова А. В., Сорокина О. Н., Розенфельд М. А., Коварский А. Л. Многофункциональные биосовместимые покрытия на магнитных наночастицах // Успехи химии. 2012. Т. 81, № 11. С. 1026–1050.
16. Mohammadi-Samani S., Miri R. Preparation and assessment of chitosan-coated superparamagnetic Fe3O4 nanoparticles for controlled delivery of methotrexate // Res. Pharm. Sci. 2013. Vol. 8, № 1. С. 25–33.
17. Zhang L., Zeng Y., Cheng Z. Removal of heavy metal ions using chitosan and modifi ed chitosan : A review // J. Molec. Liq. 2016. Vol. 214. P. 175–191.
18. Singh A. N., Singh S., Suthar N., Dubey V. K. Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease, procerain B // J. Agric. Food Chem. 2011. Vol. 59, № 11. P. 6256–6262.
19. Кильдеева Н. Р., Перминов П. А., Владимиров Л. В., Новиков В. В., Михайлов С. Н. О механизме реакции глутарового альдегида с хитозаном // Биоорг. химия. 2009. Т. 35, № 3. С. 397–407.
20. Казимирова К. О., Хабибуллин В. Р., Решетникова И. С., Егунова О. Р., Штыков С. Н. Концентрирование пищевых азокрасителей Е110 и Е124 на наночастицах магнетита, модифицированных ЦТАБ // Изв. Сарат. ун-та. Нов. сер. Сер. Химия. Биология. Экология. 2017. Т. 17, вып. 2. С. 138–142.
21. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных М. : Мир. 2006, 440 с.
22. Беллами Л. Инфракрасные спектры сложных молекул. М. : Рипол Классик, 2013. 594 с.
23. Qiang L., Yang T., Li Z., Wang H., Chen X., Cui X. Molecular dynamics simulations of the interaction between Fe3O4 and biocompatible polymer // Coll. and Surf. A : Physicochem. Eng. Asp. 2014. Vol. 456. P. 62–66.
24. Большаков И. Н., Сизых А. Г., Сурков Е. В., Дуреева Н. С., Шунтиков А. В. Электронные и колебательные спектры хитозана // Хитин и хитозан : материалы VIII междунар. конф. Казань, 2006. С. 86–89.
25. Колсанова Е. В., Орозалиев Э. Э., Шиповская А. Б. Вискозиметрические свойства растворов хитозана в уксусной кислоте и натрий-ацетатном буфере // Изв. Сарат. ун-та. Нов. сер. Сер. Химия. Биология. Экология. 2014. Т. 14, вып. 2. С. 5–9.
26. Куликов С. Н., Тюрин Ю. А., Албулов А. И., Лопатин С. А., Варламов В. П. Антибактериальная активность хитозана : практика и теория // Современные перспективыв исследовании хитина и хитозана : материалы 9-й междунар. конф. Ставрополь, 2008. С. 184–187.