Cite this article as:

Seliverstova E. Y., Vyrostkov V. A., Yarovaya E. V., Kulikov M. P., Drobot V. Y., Sazykin I. S., Sazykina M. A. The Effect of Pollutants on the Emergence of Rifampicin Resistance in Bacteria of the Pseudomonas Genus. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2018, vol. 18, iss. 4, pp. 439-445. DOI: https://doi.org/10.18500/1816-9775-2018-18-4-439-445


This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Heading: 
UDC: 
579.26
Language: 
Russian

The Effect of Pollutants on the Emergence of Rifampicin Resistance in Bacteria of the Pseudomonas Genus

Abstract

The anthropogenic pressure on ecosystems may contribute to the spread of antibiotic resistance among bacteria in natural conditions. Due to this, the aim of this work was to study the impact of specific biocides, antibiotics, pesticides and heavy metals on the emergence of rifampicin resistant mutants of Pseudomonas putida. To assess the impact of toxic substances on the emergence of rifampicin-resistant mutants the studied substances and rifampicin in the final concentration of 100 μg/ml were added into nutrient medium before plating. In the course of the experiment the stimulating effects of clopyralid and glyphosate on the process were shown. The most pronounced effect was observed in the case of glyphosate application in the concentration of 0.67 mg/ml. The obtained results indicate high risk of spreading antibiotic resistance among the microbial communities of soils subjected to treatment with pesticides.

References

1. Сазыкина М. А., Сазыкин И. С., Хмелевцова Л. Е., Хаммами М. И., Селиверстова Е. Ю. Антибиотики и гены антибиотикорезистентности в окружающей среде // Вестн. биотехнологии и физ.-хим. биологии им. Ю. А. Овчинникова. 2016. Т. 12, № 2. С. 30‒40.

2. Yılmaz Ç. Özcengiz G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug effl ux pumps // Biochem. Pharmacology. 2017. Vol. 133. P. 43–62.

3. Ling L. L., Schneider T., Peoples A. J., Spoering A. L., Engels I, Conlon B. P., Mueller A., Schäberle T. F., Hughes D.E., Epstein S., Jones M., Lazarides L., Steadman V. A., Cohen D. R., Felix C. R., Fetterman K. A., Millett W.P., Nitti A. G., Zullo A.M., Chen C., Lewis K. A new antibiotic kills pathogens without detectable resistance // Nature. 2015. Vol. 517. P. 455‒459.

4. Kim H. U., Blin K., Lee S. Y., Weber T. Recent development of computational resources for new antibiotics discovery // Current Opinion in Microbiology. 2017. Vol. 39. P. 113‒120.

5. Suzuki S., Horinouchi T., Furusawa C. Suppression of antibiotic resistance acquisition by combined use of antibiotics // J. of Biosci. and Bioengineer. 2015. Vol. 120, № 4. P. 467‒469.

6. Супотницкий М. В. Механизмы развития резистентности к антибиотикам у бактерий // Биопрепараты. 2011. № 2. С. 4–11.

7. Rolain J. M., Abat C., Jimeno M.-T., Fournier P.-E., Raoult D. Do we need new antibiotics? // Clinical Microbiology and Infection. 2016. Vol. 22, № 5. P. 408‒415.

8. Safari Sinegani A. A., Younessi N. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses // J. of Global Antimicrob. Resist. 2017. Vol. 10. P. 247‒255

9. Wesgate R., Grasha P., Maillard J.-Y. Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage // Amer. J. of Infect. Control. 2016. Vol. 44. P. 458‒464.

10. Molina-González D., Alonso-Calleja C., Alonso-Hernando A. Effect of sub-lethal concentrations of biocides on the susceptibility to antibiotics of multi-drug resistant Salmonella enterica strains // Food Control. 2014. Vol. 40. P. 329‒334.

11. Rangasamy K., Athiappan M., Devarajan N., Parray J. A. Emergence of multi drug resistance among soil bacteria exposing to insecticides // Microb. Pathogen. 2017. Vol. 105. P. 153‒165.

12. Rangasamy K., Athiappan M., Devarajan N., Samykannu G., Parray J. A., Aruljothi K. N., Shameem N., Alqarawi A. A., Hashem A., Abd-Allah E. F. Pesticide degrading natural multidrug resistance bacterial fl ora // Microb. Pathogen. 2018. Vol. 114. P. 304‒310.

13. Jatsenko T., Tover A., Tegova R., Kivisaar M. Molecular characterization of Rif r mutations in Pseudomonas aeruginosa and Pseudomonas putida // Mutation Res. 2010. Vol. 683. P. 106‒114.

14. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning : A Laboratory Manual. Cold Spring Habor Laboratory press, 1982. 479 p.

15. Сазыкина М. А., Чистяков В. А., Сазыкин И. С., Лагутова Л. П., Новикова Е. М., Латышев А. И. Использование бактериального lux-биосенсора для детекции загрязнения природных вод ртутью // Вода : химия и экология. 2010. № 5. С. 24‒29.

16. Rivera-Ramírez X. O., Hernández-Ojeda S. L., Espinosa-Aguirre J. J., Camacho-Carranza R. Antibiotic resistance mutations in bacteria selected by exposure to pesticides // Toxicol. Lett. 2016. Vol. 259. Supplement. P. S218‒S219. DOI: https://doi.org/10.1016/j.toxlet.2016.07.52

17. Wu D., Lu R., Chen Yu., Deng Chao., Tan Q. Study of cross-resistance mediated by antibiotics, chlorhexidine and Rhizoma coptidis in Staphylococcus aureus // J. of Global Antibiotic Resistance. 2016. № 7. P. 61‒66.

Short text (in English): 
Full text (in Russian):