Phase equilibria and critical phenomena in component mixtures of the cut 1 of the quaternary system Potassium Nitrate – Water – Pyridine – Butyric Аcid whose constituent ternary liquid system had a closed binodal curve were studied by means of the visualpolythermal method within 5–60oC. The volumes of two monotectic states in the composition tetrahedron have been found to be in contact via critical tie lines with increasing temperature.
Method of low-temperature differential thermal analysis using a differential scanning calorimeter of heat flow was first studied system n-nonadecane – cyclododecane. The studied systems are of the eutectic type. Alloy of eutectic composition contains 37,0 wt % of cyclododecane and melts at a temperature of 20.4 °C.
Phase equilibria and critical phenomena in the water-i-butyric acid binary system were studied by the visual polythermal method over the temperature range –10–30°C. The system is characterized by delamination with an upper critical solution temperature (UCST) equal 25.8°C. In the system at –1.8°C, these occurs a nonvariant monotectic equilibrium whose solid phase are ice crystals. The phase diagram of the system is plotted.
The phase diagram of the potassium thiocyanate–water binary system was studied by the visual polythermal method and by the method of time–temperature curves over а temperature range – 35–180 оС. There is an eutectic equilibrium at –32.6 оС in the system; the solid phases of this equilibrium are ice and individual potassium thiocyanate. The composition of the liquid phase of the eutectic state was determined.
The stable tetrahedron LiF-KF-KCl-K2WO4 of the quinary reciprocal system Li,K||F,Cl,WO4 was studied by differential thermal analysis, and the characteristics of eutectic and peritectic were determined.