Cite this article as:
Tuchina E. S. Some aspects of antimicrobial photodynamic eff ects. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 1, pp. 33-46. DOI: https://doi.org/10.18500/1816-9775-2022-22-1-33-46
Some aspects of antimicrobial photodynamic eff ects
Antimicrobial phototherapy is an alternative method for combating clinically signifi cant microorganisms associated with lesions of the skin, mucous membranes of the oral cavity, respiratory, gastrointestinal and urogenital tracts. The method uses non-toxic dyes called photosensitizers, molecules that can be excited by harmless visible light to form reactive oxygen species. Numerous studies of the method in vitro and in vivo have demonstrated the destruction of microorganisms or a signifi cant reduction in their number. Reactive oxygen species are produced upon photoactivation and attack targets such as proteins, lipids, and nucleic acids present inside microbial cells. This review is intended to highlight current data on antimicrobial photoexposure.
- Liu Y., Qin R., Zaat S. A. J., Breukink E., Heger M. Antibacterial photodynamic therapy: overview of a promising approach to fi ght antibiotic-resistant bacterial infections // J. of Clinical and Translational Research. 2015. Vol. 1. P. 140–167. https://dx.doi.org/10.18053/jctres.201503.002
- Mahmoudi H., Bahador A., Pourhajibagher M., Alikhani M. Y. Antimicrobial photodynamic therapy: An effective alternative approach to control bacterial infections // J. Lasers Med. Sci. 2018. Vol. 9. P. 154–162. https://doi.org/10.15171/jlms.2018.29
- Muehler D., Rupp C. M., Keceli S., Brochhausen C., Siegmund H., Maisch T., Hiller K.-A., Buchalla W., Cieplik F. Insights into mechanisms of antimicrobial photodynamic action toward biofi lms using phenalen-1- one derivatives as photosensitizers // Front. Microbiol. 2020. Vol. 11. P. 589364-73. https://doi.org/10.3389/fmicb.2020.589364
- Dai T., Huang Y. Y., Hamblin M. R. Photodynamic therapy for localized infections – state of the art // Photodiagnosis Photodyn. Ther. 2009. Vol. 6. P. 170–188. https://doi.org/10.1016/j.pdpdt.2009.10.008
- Rosa L. P., Silva F. C. da. Antimicrobial photodynamic therapy: a new therapeutic option to combat infections // J. Med. Microb. Diagn. 2014. Vol. 3 P. 100158-64. https://doi.org/10.4172/2161-0703.1000158
- Hamblin M. R. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes // Curr. Opin. Microbiol. 2016. Vol. 33. P. 67–73. https://doi.org/10.1016/j.mib.2016.06.008
- Cieplik F., Deng D., Crielaard W., Buchalla W., Hellwig E., Al-Ahmad A., Maisch T. Antimicrobial photodynamic therapy – what we know and what we don’t // Critical Reviews in Microbiology. 2018. Vol. 44. P. 571–589. https://doi.org/10.1080/1040841X.2018.1467876
- Hu X., Huang Y. Y., Wang Y., Wang X., Hamblin M. R. Antimicrobial photodynamic therapy to control clinically relevant biofi lm infections // Frontiers in Microbiology. 2018. Vol. 9. P. 1299–1307. https://doi.org/10.3389/ fmicb. 2018.01299
- Feng Y., Liu L., Zhang J., Aslan H., Dong M. Photoactive antimicrobial nanomaterials // J. Mater. Chem. B. 2017. Vol. 5. P. 8631–8652. https://doi.org/10.1039/C7TB01860F
- Reginato E., Wolf P., Hamblin M. R. Immune response after photodynamic therapy increases anti-cancer and anti-bacterial effects // World J. Immunol. 2014. Vol. 4. P. 1–11. https://doi.org/10.5411/wji.v4.i1
- Gwynne P. J., Gallagher M. P. Light as a Broad-Spectrum Antimicrobial // Front. Microbiol. 2018. Vol. 9. P. 119–128. https://doi.org/10.3389/fmicb.2018.00119
- Nakonechny F., Nisnevitch M. Chapter 7 in Microorganisms // Aspects of Photodynamic Inactivation of Bacteria. IntechOpen, 2019. P. 131–144. http://dx.doi.org/10.5772/intechopen.89523
- Rezaie A., Leite G. G. S., Melmed G. Y., Mathur R., Villanueva-Millan M. J., Parodi G. Ultraviolet A light effectively reduces bacteria and viruses including coronavirus // PLoS ONE. 2020. Vol. 15. P. 199–207. https://doi.org/10.1371/journal.pone.0236199
- Dias L. D., Bagnato V. S. An update on clinical photodynamic therapy for fighting respiratory tract infections: a promising tool against COVID-19 and its co-infections // Laser Phys. Lett. 2020. Vol. 17. P. 083001. https://doi.org/10.1088/1612-202X/ab95a9
- Rupel K., Zupin L., Ottaviani G., Bertani I., Martinelli V., Porrelli D., Vodret S., Vuerich R., Passos da Silva D., Bussani R., Crovella S., Parsek M., Venturi V., Di Lenarda R., Biasotto M., Zacchigna S. Blue laser light inhibits biofi lm formation in vitro and in vivo by inducing oxidative stress // Biofilms and Microbiomes. 2019. Vol. 5. P. 29–40. https://doi.org/10.1038/s41522-019-0102-9
- Mofi di A. A., Rochelle P. A., Chou C. I., Mehta H. M., Verne L., Linden K. G. Bacterial Survival After Ultraviolet Light Disinfection: Resistance, Regrowth and Repair // Am. Water Work. Assoc. Annu. Conf. Exhib. 2002. Vol. 1. P. 1–11.
- Welch D., Buonanno M., Veljko G., Shuryak I., Crickmore C., Bigelow A. W., Randers-Pehrson G., Johnson G. W., Brenner D. J. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases // Sci. Rep. 2018. Vol. 8. P. 2752. https://doi.org/10.1038/s41598-018-21058-w
- Cheng Y., Chen H., Sánchez Basurto L. A., Protasenko V. V., Bharadwaj S., Islam M., Moraru C. I. Inactivation of Listeria and E. coli by Deep-UV LED: Effect of substrate conditions on inactivation kinetics // Sci. Rep. 2020. Vol. 10. P. 3411. https://doi.org/10.1038/s41598-020-60459-8
- Monsalves M. T., Ollivet-Besson G. P., Amenabar M. J., Blamey J. M. Isolation of a psychrotolerant and UVC-resistant bacterium from elephant island, antarctica with a highly thermoactive and thermostable catalase // Microorganisms. 2020. Vol. 9. P. 95.
- Biasin M., Bianco A., Pareschi G., Cavalleri A., Cavatorta C., Fenizia C., Galli P., Lessio L., Lualdi M., Tombetti E., Ambrosi A., Redaelli E. M. A., Saulle I., Trabattoni D., Zanutta A., Clerici M. UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication // Sci. Rep. 2021. Vol. 11. P. 6260. https://doi.org/10.1038/s41598-021-85425-w
- Coohill T. P., Sagripanti J.-L. Overview of the Inactivation by 254 nm Ultraviolet Radiation of Bacteria with Particular Relevance to Biodefense // Photochemistry and Photobiology. 2008. Vol. 84. P. 1084–1090.
- Dai T. The antimicrobial effect of blue light: What are behind? // Virulence. 2017. Vol. 8. P. 649–652. https://doi.org/10.1080/21505594.2016.1276691
- Ferrer-Espada R., Liu X., Goh X. S., Dai T. Antimicrobial Blue Light Inactivation of Polymicrobial Biofilms // Frontiers in Microbiology. 2019. Vol. 10. P. 721. https://doi.org/10.3389/fmicb.2019.00721
- Alcántara-Díaz D., Breña-Valle M., Serment-Guerrero J. Divergent adaptation of Escherichia coli to cyclic ultraviolet light exposures // Mutagenesis. 2004. Vol. 19. P. 349–361.
- Maclean M., MacGregor S. J., Anderson J. G., Woolsey G. A. The role of oxygen in the visible-light inactivation of Staphylococcus aureus // J. Photochem. Photobiol. B. 2008. Vol. 92. P. 180–185.
- Korchenova M. V., Tuchina E. S., Shvayko V. Yu., Gulkhandanyan A. G., Zakoyan A. A., Kazaryan R. K., Gulkhandanyan G. V., Dzhagarov B. M., Tuchin V. V. Photodynamic effect of radiation with the wavelength 405 nm on the cells of microorganisms sensitised by metalloporphyrin compounds // Quantum Electron. 2016. Vol. 46. P. 521–527.
- Fila G., Kawiak A., Grinholc M. S. Blue light treatment of Pseudomonas aeruginosa: Strong bactericidal activity, synergism with antibiotics and inactivation of virulence factors // Virulence. 2016. Vol.1. P. 1–21. https://doi.org/10.1080/21505594.2016.1250995
- Gasperini A. E., Sanchez S., Doiron A. L., Lyles M., Guy G. K. Non-ionising UV light increases the optical density of hygroscopic self assembled DNA crystal films // Sci. Rep. 2017. Vol. 7. P. 1–10. https://doi.org/10.1038/s41598-017-06884-8
- Lamprecht-Grandío M., Cortesão M., Mirete S., de la Cámara M. B., de Figueras C. G., Pérez-Pantoja D., White J. J., Farías M.E., Rosselló-Móra R., GonzálezPastor J. E. Novel Genes Involved in Resistance to both Ultraviolet Radiation and Perchlorate from the Metagenomes of Hypersaline Environments // Front. Microbiol. 2020. Vol. 11. P. 1–13.
- Kvam E., Benner K. Mechanistic insights into UV-A mediated bacterial disinfection via endogenous photosensitizers // J. Photochem. Photobiol. B. 2020. Vol. 209. P. 111899. https://doi.org/10.1016/j.jphotobiol.2020.111899
- Mohl M., Dombovari A., Tuchina E. S., Petrov P. O., Bibikova O. A., Skovorodkin I., Popov A.P., Rautio A.-R., Sarkar A., Mikkola J.P., Huuhtanen M., Vainio S., Keiski R. L., Prilepsky A., Kukovecz A., Konya Z., Tuchin V. V., Kordas K. Titania nanofibers in gypsum composites: An antibacterial and cytotoxicology study // J. Mater. Chem. B. 2014. Vol. 2. P. 1307–1316.
- Rezaie A., Leite G. G. S., Melmed G.Y., Mathur R., Villanueva-Millan M.J., Parodi G., Sin J., Germano G. F., Morales W., Weitsman S., Kim S. Y., Park J. H., Sakhaine S., Pimentel M. Ultraviolet A light effectively reduces bacteria and viruses including coronavirus // PLoS ONE. 2020. Vol. 15. P. 1–10. https://doi.org/10.1371/journal.pone.0236199
- Tenkumo T., Ishiyama K., Prymak O., Nakamura K., Shirato M., Ogawa T., Miyashita M., Takahashi M., Epple M., Kanno T., Sasaki K. Bactericidal activity and recovery effect of hydroxyl radicals generated by ultraviolet irradiation and silver ion application on an infected titanium surface // Sci. Rep. 2020. Vol. 10. P. 8553. https://doi.org/10.1038/s41598-020-65411-4
- Hoenes K., Bauer R., Meurle T., Spellerberg B., Hessling M. Inactivation Effect of Violet and Blue Light on ESKAPE Pathogens and Closely Related Non-pathogenic Bacterial Species – A Promising Tool Against AntibioticSensitive and Antibiotic-Resistant Microorganisms // Front. Microbiol. 2021. Vol. 11. P. 612367. https://doi.org/10.3389/fmicb.2020.612367
- Tuchin V. V., Genina E. A., Tuchina E. S., Svetlakova A. V., Svenskaya Y. I. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery // Advanced Drug Delivery Reviews. 2022. Vol. 180. P. 114037. https://doi.org/10.1016/j.addr.2021.114037
- Ma W., Wang T., Zang L., Jiang Z., Zhang Z., Bi L., Cao W. Bactericidal effects of hematoporphyrin monomethyl ether-mediated blue-light photodynamic therapy against Staphylococcus aureus // Photochem. Photobiol. Sci. 2019. Vol. 18. P. 92–97.
- Seeger M. G., Ries A. S., Gressler L. T., Botton S. A., Iglesias B. A., Cargnelutti J. F. In vitro antimicrobial photodynamic therapy using tetra-cationic porphyrins against multidrug-resistant bacteria isolated from canine otitis // Photodiagnos. Photodyn. Ther. 2020. Vol. 32. P. 101982. https://doi.org/10.1016/j.pdpdt.2020.101982
- Klausen M., Ucuncu M., Bradley M. Design of Photosensitizing Agents for Targeted Antimicrobial Photodynamic Therapy // Molecules. 2020. Vol. 25. P. 5239. https://doi.org/10.3390/molecules25225239
- Waldmanna I., Schmidb T., Prinza J., Mühleisenc B., Zbindenb R., Imhofc L., Achermanna Y. Photodynamic therapy improves skin antisepsis as a prevention strategy in arthroplasty procedures: A pilot study // Photodiagnos. Photodyn. Ther. 2020. Vol. 31. P. 101941. https://doi.org/10.1016/j.pdpdt.2020.101941
- Luksiene Z., Zukauskas A. Prospects of photosensitization in control of pathogenic and harmful microorganisms // J. Appl. Microbiol. 2009. Vol. 107. P. 1415–21.
- Hill R., Rennie M. Y., Douglas J. Using bacterial fl uorescence imaging and antimicrobial stewardship to guide wound managementpractices: A case series // Ostomy Wound Manage. 2018. Vol. 64. P. 18–29.
- Hurley C. M., McClusky P., Sugrue R. M., Clover J. A., Kelly J. E. Effi cacy of a bacterial fl uorescence imaging device in an outpatient wound care clinic: A pilot study // J. Wound Care. 2019. Vol. 28. P. 438–443. https://doi.org/10.12968/jowc.2019.28.7.438
- Rennie M. Y., Dunham D., Lindvere-Teene L., Raizman R., Hill R., Linden R. Understanding real-time fl uorescence signals from bacteria and wound tissues observed with the MolecuLight i:X™ // Diagnostics. 2019. Vol. 9. P. 1–12.
- Alves E., Faustino M. A. F., Neves M. G., Cunha A., Tome J., Almeida A. An insight on bacterial cellular targets of photodynamic inactivation // Future Med. Chem. 2014. Vol. 6. P. 141–164. https://doi.org/10.4155/fmc.13.211
- Thadani H., Deacon A., Peters T. Diagnosis and management of porphyria // Br. Med. J. 2000. Vol. 320. P. 1647-51. https://doi.org/10.1136/bmj.320.7250.1647
- Kępczyński M., Pandian R. P., Smith K. M., Ehrenberg B. Do liposome-binding constants of porphyrins correlate with their measured and predicted partitioning between octanol and water // J. Photochem. Photobiol. 2002. Vol. 76. P. 127–134.
- Almeida J., Tomé J. P., Neves M. G., Tomé A. C., Cavaleiro J. A., Cunha Â., Costa L., Faustino M. A., Almeida A. Photodynamic inactivation of multidrugresistant bacteria in hospital wastewaters: infl uence of residual antibiotics // Photochem. Photobiol. Sci. 2014. Vol. 13. P. 626–635.
- Kato H., Komagoe K., Inoue T., Masuda K., Katsu T. Structure–activity relationship of porphyrin- induced photoinactivation with membrane function in bacteria and erythrocytes // Photochem. Photobiol. Sci. 2018. Vol. 17. P. 954–963. https://doi.org/10.1039/C8PP00092A
- Annunzio S. R. de, Costa N. C. S., Mezzina R. D., Graminha M. A. S., Fontana C. R. Chlorin, Phthalocyanine, and Porphyrin Types Derivatives in Phototreatment of Cutaneous Manifestations: A Review // Int. J. Mol. Sci. 2019. Vol. 20. P. 3861. https://doi.org/10.3390/ijms20163861
- Linkner R. V., Jim O. S., Haddican M., Singer G., ShimChang H. Evaluating the Effi cacy of Photodynamic Therapy with 20% Aminolevulinic Acid and Microdermabrasion as a Combination Treatment Regimen for Acne Scarring: A Split-face, Randomized, Double-blind Pilot Study // J. Clin. Aesthet. Dermatol. 2014. Vol. 7. P. 32–41.
- Shleeva M., Savitsky A., Kaprelyants A. Photoinactivation of mycobacteria to combat infection diseases: current state and perspectives // Applied Microbiology and Biotechnology. 2021. Vol. 105. P. 4099. https://doi.org/10.1007/s00253-021-11349-0
- Wang T., Wu L., Wang Y., Song J., Zhang F., Hexy X. Z. Aminolevulinate ethosome–mediated photodynamic therapy against acne: in vitro and in vivo analyses // Drug Delivery and Translational Research. 2021. Vol. 12. P. 325–332. https://doi.org/10.1007/s13346-021-00942-5
- Wu M.-F., Deichelbohrer M., Tschernig T., Laschke M. W., Szentmary N., Hüttenberger D., Foth H.-J., Seitz B., Bischoff M. Chlorin e6 mediated photodynamic inactivation for multidrug resistant Pseudomonas aeruginosa keratitis in mice in vivo // Sci. Rep. 2016. Vol. 7. P. 1. https://doi.org/10.1038/srep44537
- Petrov P. O., Tuchina E. S., Kulikova M. V., Kochubey V. I., Tuchin V. V. Comparison of the effi ciency of titanium(IV) and iron(III) oxide nanoparticles as mediators in suppression of bacterial growth by radiation of a blue (405 nm) light-emitting diode // Opt. Spectrosc. 2013. Vol. 115. P. 161–165. https://doi.org/10.1134/S0030400X13080158
- Barroso R. A., Navarro R., Tim C. R., de P. Ramos L., de Oliveira L.D., Araki Â. T., Fernandes K. G. C., Macedo D., Assis L. Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hypericum perforatum) photosensitizer: in vitro study // Lasers Med. Sci. 2020. Vol. 36. P. 1235–1240. https://doi.org/10.1007/s10103-020-03163-3
- Dascalu (Rusu) L. M., Moldovan M., Prodan D., Ciotlaus I., Popescu V., Baldea I., Carpa R., Sava S., Chifor R., Badea M. E. Assessment and Characterization of Some New Photosensitizers for Antimicrobial Photodynamic Therapy (aPDT) // Materials. 2020. Vol. 13. P. 3012. https://doi.org/10.3390/ma13133012
- Dharmaratne P., Wong R. C. H., Wang J., Lo P. C., Wang B., Chan B. C. L., Lau K.-M., Lau C. B. S., Fung K. P., Ip M., Ng D. K. P. Synthesis and In Vitro Photodynamic Activity of Cationic Boron Dipyrromethene-Based Photosensitizers Against Methicillin-Resistant Staphylococcus aureus // Biomedicines. 2020. Vol. 8. P. 140. https://doi.org/10.3390/biomedicines8060140.
- Palavecino C. E., Pérez C., Zuñiga T. Chapter in Photodynamic Therapy – From Basic Science to Clinical Research // Photodynamic Treatment of Staphylococcus aureus Infections. IntechOpen, 2021. P. 1–21. https://doi.org/10.5772/intechopen.95455
- Grinholc M., Szramka B., Kurlenda J., Graczyk A., Bielawski K. P. Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillinsusceptible Staphylococcus aureus is strain-dependent // J. of Photochem. Photobiol. B. 2007. Vol. 90. P. 57. https:// doi.org/10.1016/j.jphotobiol.2007.11.002
- Shabangu S. M., Babu B., Soy R. C., Oyim J., Amuhaya E., Nyokong T. Susceptibility of Staphylococcus aureus to porphyrin-silver nanoparticle mediated photodynamic antimicrobial chemotherapy // Photodiagnos. Photodyn. Ther. 2020. Vol. 30. P. 101647. https://doi.org/10.1016/j.jlumin.2020.117158
- Oliveira L., Tuchin V. V. The Optical Clearing Method: A New Tool for Clinical Practice and Biomedical Engineering. Basel : Springer Nature Switzerland AG, 2019. 177 p.
- Zhao Y., Tian Y., Cui Y., Liu W., Ma W., Jiang X. Small Molecule-Capped Gold Nanoparticles as Potent Antibacterial Agents That Target Gram-Negative Bacteria // J. Am. Chem. Soc. 2010. Vol. 132. P. 12349–12356.
- Tuchina E. S., Ratto F., Khlebtsov B. N., Centi S., Matteini P., Rossi F., Fusi F., Khlebtsov N. G., Pini R., Tuchin V. V. Combined near infrared photothermolysis and photodynamic therapy by association of gold nanoparticles and an organic dye // Proc. SPIE 7911: Plasmonics in Biology and Medicine. 2011. VIII. P. 79111C. https://doi.org/10.1117/12.875122
- Rout B., Liu C.-H., Wu W.-C. Photosensitizer in lipid nanoparticle: a nano-scaled approach to antibacterial function // Sci. Rep. 2017. Vol. 7. P. 7892. https://doi.org/10.1038/s41598-017-07444-w
- Su C., Huang K., Li H.-H., Lu Y.-G., Zheng D.-L. Antibacterial Properties of Functionalized Gold Nanoparticles and Their Application in Oral Biology // Journal of Nanomaterials. 2020. P. 1–13. https://doi.org/10.1155/2020/5616379
- Maliszewska I., Wanarska E., Thompson A. C., Samuel I. D. W., Matczyszyn K. Biogenic Gold Nanoparticles Decrease Methylene Blue Photobleaching and Enhance Antimicrobial Photodynamic Therapy // Molecules. 2021. Vol. 26. P. 623. https://doi.org/10.3390/molecules26030623
- Khlebtsov B. N., Tuchina E. S., Tuchin V. V., Khlebtsov N. G. Multifunctional Au nanoclusters for targeted bioimaging and enhanced photodynamic inactivation of Staphylococcus aureus // RSC Advances. 2015. Vol. 5. P. 61639–61649.
- Bucharskaya A., Maslyakova G., Terentyuk G., Yakunin A., Avetisyan Y., Bibikova O., Tuchina E., Khlebtsov B., Khlebtsov N., Tuchin V. Towards effective photothermal/photodynamic treatment using plasmonic gold nanoparticles (Review) // Int. J. Mol. Sci. 2016. Vol. 17. P. 1295. https://doi.org/10.3390/ijms17081295
- Abrahamse H., Hamblin M. R. New photosensitizers for photodynamic therapy // Biochem. J. 2016. Vol. 473. P. 347–364. https://doi.org/10.1042/BJ20150942
- Sarkar A., Shchukarev A., Leino A.-R., Kordas K., Mikkola J.-P., Petrov P. O., Tuchina E. S., Popov A. P., Darvin M. E., Meinke M., Lademann J., Tuchin V. V. Photocatalytic activity of TiO2 nanoparticles: Effect of thermal annealing under various gaseous atmospheres // Nanotechnology. 2012. Vol. 23. P. 1–8.
- Mohl M., Dombovari A., Rautio A.-R., Tuchina E. S., Petrov P. O., Bibikova O. A., Skovorodkin I., Popov A. P., Sarkar A., Mikkola J.-P., Valtanen A., Huuhtanen M., Vainio S., Keiski R. L., Prilepskyi A., Kukovecz A., Konya Z., Tuchin V. V., Kordas K. Gypsum-titania fi ber nanocomposites for indoor antimicrobial coatings // J. Mat. Chem. 2014. Vol. 2. P. 1307–1316.
- Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future? // Int. J. Nanomed. 2017. Vol. 12. P. 1227–1249. https://doi.org/10.2147/IJN.S121956
- 73. Lad V. N., Murthy Z. V. P. Advanced materials for photocatalytic applications: The challenge ahead // Handbook of Smart Photocatalytic Materials. Elsevier, 2020. P. 3–8.
- Tuchina E. S., Tuchin V. V. TiO2 nanoparticle enhanced photodynamic inhibition of Pathogens // Laser Phys. Lett. 2010. Vol. 7. P. 1–6. https://doi.org/10.1002/lapl.201010030
- Tuchina E. S., Tuchin V. V. Photodynamic/photocatalytic effects on microorganisms processed by nanodyes // Proc. SPIE 7576: Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications II. 2010. P. 75761-8.
- Khlebtsov B. N., Tuchina E. S., Khanadeev V. A., Panfi lova E. V., Petrov P. O., Tuchin V. V., Khlebtsov N. G. Enhanced photoinactivation of Staphylococcus aureus with nanocomposites containing plasmonic particles and hematoporphyrin // J. Biophotonics. 2013. Vol. 6. P. 338–351. https://doi.org/10.1002/jbio.201200079